Equations for a K3 Lehmer map
Authors:
Simon Brandhorst and Noam D. Elkies
Journal:
J. Algebraic Geom. 32 (2023), 641-675
DOI:
https://doi.org/10.1090/jag/810
Published electronically:
April 26, 2023
Full-text PDF
Abstract |
References |
Additional Information
Abstract: C. T. McMullen proved the existence of a K3 surface with an automorphism of entropy given by the logarithm of Lehmer’s number, which is the minimum possible among automorphisms of complex surfaces. We reconstruct equations for the surface and its automorphism from the Hodge theoretic model provided by McMullen. The approach is computer aided and relies on finite non-symplectic automorphisms, $p$-adic lifting, elliptic fibrations and the Kneser neighbor method for $\mathbb {Z}$-lattices. It can be applied to reconstruct any automorphism of an elliptic K3 surface from its action on the Neron-Severi lattice.
References
- Michela Artebani, Alessandra Sarti, and Shingo Taki, $K3$ surfaces with non-symplectic automorphisms of prime order, Math. Z. 268 (2011), no. 1-2, 507–533. With an appendix by Shigeyuki Kond\B{o}. MR 2805445, DOI 10.1007/s00209-010-0681-x
- Simon Brandhorst and Noam D. Elkies, Equations for a $K3$ Lehmer map, arXiv:2103.15101, 2021.
- Jérémy Berthomieu, Christian Eder, and Mohab Safey El Din, msolve: a library for solving polynomial systems, ISSAC ’21—Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation, ACM, New York, [2021] ©2021, pp. 51–58. MR 4398766, DOI 10.1145/3452143.3465545
- Simon Brandhorst, The classification of purely non-symplectic automorphisms of high order on K3 surfaces, J. Algebra 533 (2019), 229–265. MR 3962759, DOI 10.1016/j.jalgebra.2019.05.016
- Serge Cantat, Dynamique des automorphismes des surfaces $K3$, Acta Math. 187 (2001), no. 1, 1–57 (French). MR 1864630, DOI 10.1007/BF02392831
- Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann, Singular 4-1-2—A computer algebra system for polynomial computations, 2019, http://www.singular.uni-kl.de.
- Alan H. Durfee, Bilinear and quadratic forms on torsion modules, Advances in Math. 25 (1977), no. 2, 133–164. MR 480333, DOI 10.1016/0001-8708(77)90002-0
- Noam Elkies and Abhinav Kumar, K3 surfaces and equations for Hilbert modular surfaces, Algebra Number Theory 8 (2014), no. 10, 2297–2411. MR 3298543, DOI 10.2140/ant.2014.8.2297
- Noam D. Elkies, Shimura curve computations via $K3$ surfaces of Néron-Severi rank at least 19, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, pp. 196–211. MR 2467847, DOI 10.1007/978-3-540-79456-1_{1}3
- Noam D. Elkies and Matthias Schütt, Genus 1 fibrations on the supersingular K3 surface in characteristic 2 with Artin invariant 1, Asian J. Math. 19 (2015), no. 3, 555–581. MR 3361282, DOI 10.4310/AJM.2015.v19.n3.a7
- Junmyeong Jang, Some remarks on non-symplectic automorphisms of K3 surfaces over a field of odd characteristic, East Asian Math. J. 30 (2014), no. 3, 321–326.
- Junmyeong Jang, A lifting of an automorphism of a K3 surface over odd characteristic, Int. Math. Res. Not. IMRN 6 (2017), 1787–1804. MR 3658183, DOI 10.1093/imrn/rnw071
- Martin Kneser, Quadratische Formen. Neu bearbeitet und herausgegeben in Zusammenarbeit mit Rudolf Scharlau, Springer, Berlin, 2002.
- Abhinav Kumar, Elliptic fibrations on a generic Jacobian Kummer surface, J. Algebraic Geom. 23 (2014), no. 4, 599–667. MR 3263663, DOI 10.1090/S1056-3911-2014-00620-2
- Abhinav Kumar, Hilbert modular surfaces for square discriminants and elliptic subfields of genus 2 function fields, Res. Math. Sci. 2 (2015), Art. 24, 46. MR 3427148, DOI 10.1186/s40687-015-0042-9
- Curtis T. McMullen, Dynamics on blowups of the projective plane, Publ. Math. Inst. Hautes Études Sci. 105 (2007), 49–89. MR 2354205, DOI 10.1007/s10240-007-0004-x
- Curtis T. McMullen, K3 surfaces, entropy and glue, J. Reine Angew. Math. 658 (2011), 1–25. MR 2831510, DOI 10.1515/CRELLE.2011.048
- Curtis T. McMullen, Automorphisms of projective K3 surfaces with minimum entropy, Invent. Math. 203 (2016), no. 1, 179–215. MR 3437870, DOI 10.1007/s00222-015-0590-z
- Keiji Oguiso, The third smallest Salem number in automorphisms of $K3$ surfaces, Algebraic geometry in East Asia—Seoul 2008, Adv. Stud. Pure Math., vol. 60, Math. Soc. Japan, Tokyo, 2010, pp. 331–360. MR 2761934, DOI 10.2969/aspm/06010331
- I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, Torelli’s theorem for algebraic surfaces of type $\textrm {K}3$, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530–572 (Russian). MR 0284440
- B. Saint-Donat, Projective models of $K-3$ surfaces, Amer. J. Math. 96 (1974), 602–639. MR 364263, DOI 10.2307/2373709
- Tetsuji Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990), no. 2, 211–240. MR 1081832
- Matthias Schütt and Tetsuji Shioda, Elliptic surfaces, Algebraic geometry in East Asia—Seoul 2008, Adv. Stud. Pure Math., vol. 60, Math. Soc. Japan, Tokyo, 2010, pp. 51–160. MR 2732092, DOI 10.2969/aspm/06010051
- Lenny Taelman, Complex multiplication and Shimura stacks, arXiv:1707.01236, 2017.
- J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 476, Springer, Berlin, 1975, pp. 33–52. MR 0393039
- The PARI Group, Univ. Bordeaux, PARI/GP version 2.11.2, 2019, http://pari.math.u-bordeaux.fr/.
- The Sage Developers, SageMath, the Sage Mathematics Software System $($version 9.1.0$)$, 2020, https://www.sagemath.org.
- Sheng Yuan Zhao, Nombres de salem et automorphismes á entropie positive de surfaces ab éliennes et de surfaces K3, (Mémoire de Master 2), https://perso.univ-rennes1.fr/serge.cantat/Documents/Zhao-Salem.pdf.
References
- Michela Artebani, Alessandra Sarti, and Shingo Taki, $K3$ surfaces with non-symplectic automorphisms of prime order, Math. Z. 268 (2011), no. 1-2, 507–533. With an appendix by Shigeyuki Kondō. MR 2805445, DOI 10.1007/s00209-010-0681-x
- Simon Brandhorst and Noam D. Elkies, Equations for a $K3$ Lehmer map, arXiv:2103.15101, 2021.
- Jérémy Berthomieu, Christian Eder, and Mohab Safey El Din, msolve: a library for solving polynomial systems, ISSAC ’21—Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation, ACM, New York, [2021] ©2021, pp. 51–58. MR 4398766, DOI 10.1145/3452143.3465545
- Simon Brandhorst, The classification of purely non-symplectic automorphisms of high order on K3 surfaces, J. Algebra 533 (2019), 229–265. MR 3962759, DOI 10.1016/j.jalgebra.2019.05.016
- Serge Cantat, Dynamique des automorphismes des surfaces $K3$, Acta Math. 187 (2001), no. 1, 1–57 (French). MR 1864630, DOI 10.1007/BF02392831
- Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann, Singular 4-1-2—A computer algebra system for polynomial computations, 2019, http://www.singular.uni-kl.de.
- Alan H. Durfee, Bilinear and quadratic forms on torsion modules, Advances in Math. 25 (1977), no. 2, 133–164. MR 480333, DOI 10.1016/0001-8708(77)90002-0
- Noam Elkies and Abhinav Kumar, K3 surfaces and equations for Hilbert modular surfaces, Algebra Number Theory 8 (2014), no. 10, 2297–2411. MR 3298543, DOI 10.2140/ant.2014.8.2297
- Noam D. Elkies, Shimura curve computations via $K3$ surfaces of Néron-Severi rank at least 19, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, pp. 196–211. MR 2467847, DOI 10.1007/978-3-540-79456-1_13
- Noam D. Elkies and Matthias Schütt, Genus 1 fibrations on the supersingular K3 surface in characteristic 2 with Artin invariant 1, Asian J. Math. 19 (2015), no. 3, 555–581. MR 3361282, DOI 10.4310/AJM.2015.v19.n3.a7
- Junmyeong Jang, Some remarks on non-symplectic automorphisms of K3 surfaces over a field of odd characteristic, East Asian Math. J. 30 (2014), no. 3, 321–326.
- Junmyeong Jang, A lifting of an automorphism of a K3 surface over odd characteristic, Int. Math. Res. Not. IMRN 6 (2017), 1787–1804. MR 3658183, DOI 10.1093/imrn/rnw071
- Martin Kneser, Quadratische Formen. Neu bearbeitet und herausgegeben in Zusammenarbeit mit Rudolf Scharlau, Springer, Berlin, 2002.
- Abhinav Kumar, Elliptic fibrations on a generic Jacobian Kummer surface, J. Algebraic Geom. 23 (2014), no. 4, 599–667. MR 3263663, DOI 10.1090/S1056-3911-2014-00620-2
- Abhinav Kumar, Hilbert modular surfaces for square discriminants and elliptic subfields of genus 2 function fields, Res. Math. Sci. 2 (2015), Art. 24, 46. MR 3427148, DOI 10.1186/s40687-015-0042-9
- Curtis T. McMullen, Dynamics on blowups of the projective plane, Publ. Math. Inst. Hautes Études Sci. 105 (2007), 49–89. MR 2354205, DOI 10.1007/s10240-007-0004-x
- Curtis T. McMullen, K3 surfaces, entropy and glue, J. Reine Angew. Math. 658 (2011), 1–25. MR 2831510, DOI 10.1515/CRELLE.2011.048
- Curtis T. McMullen, Automorphisms of projective K3 surfaces with minimum entropy, Invent. Math. 203 (2016), no. 1, 179–215. MR 3437870, DOI 10.1007/s00222-015-0590-z
- Keiji Oguiso, The third smallest Salem number in automorphisms of $K3$ surfaces, Algebraic geometry in East Asia—Seoul 2008, Adv. Stud. Pure Math., vol. 60, Math. Soc. Japan, Tokyo, 2010, pp. 331–360. MR 2761934, DOI 10.2969/aspm/06010331
- I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, Torelli’s theorem for algebraic surfaces of type $\mathrm {K}3$, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530–572 (Russian). MR 0284440
- B. Saint-Donat, Projective models of $K-3$ surfaces, Amer. J. Math. 96 (1974), 602–639. MR 364263, DOI 10.2307/2373709
- Tetsuji Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990), no. 2, 211–240. MR 1081832
- Matthias Schütt and Tetsuji Shioda, Elliptic surfaces, Algebraic geometry in East Asia—Seoul 2008, Adv. Stud. Pure Math., vol. 60, Math. Soc. Japan, Tokyo, 2010, pp. 51–160. MR 2732092, DOI 10.2969/aspm/06010051
- Lenny Taelman, Complex multiplication and Shimura stacks, arXiv:1707.01236, 2017.
- J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1975, pp. 33–52. Lecture Notes in Math., Vol. 476. MR 0393039
- The PARI Group, Univ. Bordeaux, PARI/GP version 2.11.2, 2019, http://pari.math.u-bordeaux.fr/.
- The Sage Developers, SageMath, the Sage Mathematics Software System $($version 9.1.0$)$, 2020, https://www.sagemath.org.
- Sheng Yuan Zhao, Nombres de salem et automorphismes á entropie positive de surfaces ab éliennes et de surfaces K3, (Mémoire de Master 2), https://perso.univ-rennes1.fr/serge.cantat/Documents/Zhao-Salem.pdf.
Additional Information
Simon Brandhorst
Affiliation:
Fakultät für Mathematik und Informatik, Universität des Saarlandes, Campus E2.4, 66123 Saarbrücken, Germany
MR Author ID:
1070371
ORCID:
0000-0002-0249-9971
Email:
brandhorst@math.uni-sb.de
Noam D. Elkies
Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
MR Author ID:
229330
Email:
elkies@math.harvard.edu
Received by editor(s):
March 21, 2021
Received by editor(s) in revised form:
June 8, 2021
Published electronically:
April 26, 2023
Additional Notes:
The first author: Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 286237555 – TRR 195 [was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 286237555 – TRR 195].
Article copyright:
© Copyright 2023
University Press, Inc.