Localizing virtual cycles for Donaldson-Thomas invariants of Calabi-Yau 4-folds
Authors:
Young-Hoon Kiem and Hyeonjun Park
Journal:
J. Algebraic Geom. 32 (2023), 585-639
DOI:
https://doi.org/10.1090/jag/816
Published electronically:
May 3, 2023
Full-text PDF
Abstract |
References |
Additional Information
Abstract: In 2020, Oh and Thomas constructed a virtual cycle $[X]^{\mathrm {vir}} \in A_*(X)$ for a quasi-projective moduli space $X$ of stable sheaves or complexes over a Calabi-Yau 4-fold against which DT4 invariants may be defined as integrals of cohomology classes. In this paper, we prove that the virtual cycle localizes to the zero locus $X(\sigma )$ of an isotropic cosection $\sigma$ of the obstruction sheaf $Ob_X$ of $X$ and construct a localized virtual cycle $[X]^{\mathrm {vir}} _\mathrm {loc}\in A_*(X(\sigma ))$. This is achieved by further localizing the Oh-Thomas class which localizes Edidin-Graham’s square root Euler class of a special orthogonal bundle. When the cosection $\sigma$ is surjective so that the virtual cycle vanishes, we construct a reduced virtual cycle $[X]^{\mathrm {vir}} _{\mathrm {red}}$. As an application, we prove DT4 vanishing results for hyperkähler 4-folds. All these results hold for virtual structure sheaves and K-theoretic DT4 invariants.
References
- David Anderson, $K$-theoretic Chern class formulas for vexillary degeneracy loci, Adv. Math. 350 (2019), 440–485. MR 3947650, DOI 10.1016/j.aim.2019.04.049
- Dave Anderson and Sam Payne, Operational $K$-theory, Doc. Math. 20 (2015), 357–399. MR 3398716, DOI 10.4171/dm/493
- Kai Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307–1338. MR 2600874, DOI 10.4007/annals.2009.170.1307
- K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88. MR 1437495, DOI 10.1007/s002220050136
- Oren Ben-Bassat, Christopher Brav, Vittoria Bussi, and Dominic Joyce, A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks, with applications, Geom. Topol. 19 (2015), no. 3, 1287–1359. MR 3352237, DOI 10.2140/gt.2015.19.1287
- Dennis Borisov and Dominic Joyce, Virtual fundamental classes for moduli spaces of sheaves on Calabi-Yau four-folds, Geom. Topol. 21 (2017), no. 6, 3231–3311. MR 3692967, DOI 10.2140/gt.2017.21.3231
- Christopher Brav, Vittoria Bussi, and Dominic Joyce, A Darboux theorem for derived schemes with shifted symplectic structure, J. Amer. Math. Soc. 32 (2019), no. 2, 399–443. MR 3904157, DOI 10.1090/jams/910
- Ragnar-Olaf Buchweitz and Hubert Flenner, A semiregularity map for modules and applications to deformations, Compositio Math. 137 (2003), no. 2, 135–210. MR 1985003, DOI 10.1023/A:1023999012081
- Yalong Cao, Jacob Gross, and Dominic Joyce, Orientability of moduli spaces of $\textrm {Spin}(7)$-instantons and coherent sheaves on Calabi-Yau 4-folds, Adv. Math. 368 (2020), 107134, 60. MR 4085139, DOI 10.1016/j.aim.2020.107134
- Yalong Cao and Naichung Conan Leung, Relative Donaldson-Thomas theory for Calabi-Yau 4-folds, Trans. Amer. Math. Soc. 369 (2017), no. 9, 6631–6659. MR 3660236, DOI 10.1090/tran/7002
- Yalong Cao, Davesh Maulik, and Yukinobu Toda, Genus zero Gopakumar-Vafa type invariants for Calabi-Yau 4-folds, Adv. Math. 338 (2018), 41–92. MR 3861701, DOI 10.1016/j.aim.2018.08.013
- Yalong Cao, Davesh Maulik, and Yukinobu Toda, Stable pairs and Gopakumar-Vafa type invariants for Calabi-Yau 4-folds, J. Eur. Math. Soc. (JEMS) 24 (2022), no. 2, 527–581. MR 4382478, DOI 10.4171/jems/1110
- Dan Edidin and William Graham, Characteristic classes and quadric bundles, Duke Math. J. 78 (1995), no. 2, 277–299. MR 1333501, DOI 10.1215/S0012-7094-95-07812-0
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- Daniel Huybrechts and Richard P. Thomas, Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes, Math. Ann. 346 (2010), no. 3, 545–569. MR 2578562, DOI 10.1007/s00208-009-0397-6
- Michi-aki Inaba, Toward a definition of moduli of complexes of coherent sheaves on a projective scheme, J. Math. Kyoto Univ. 42 (2002), no. 2, 317–329. MR 1966840, DOI 10.1215/kjm/1250283873
- Young-Hoon Kiem, Localizing virtual fundamental cycles for semi-perfect obstruction theories, Internat. J. Math. 29 (2018), no. 4, 1850032, 30. MR 3797199, DOI 10.1142/S0129167X18500325
- Young-Hoon Kiem and Jun Li, Localizing virtual cycles by cosections, J. Amer. Math. Soc. 26 (2013), no. 4, 1025–1050. MR 3073883, DOI 10.1090/S0894-0347-2013-00768-7
- Young-Hoon Kiem and Jun Li, Localizing virtual structure sheaves by cosections, Int. Math. Res. Not. IMRN 22 (2020), 8387–8417. MR 4216692, DOI 10.1093/imrn/rny235
- Young-Hoon Kiem and Jun Li, Quantum singularity theory via cosection localization, J. Reine Angew. Math. 766 (2020), 73–107. MR 4145203, DOI 10.1515/crelle-2019-0018
- Young-Hoon Kiem and Hyeonjun Park, Virtual intersection theories, Adv. Math. 388 (2021), Paper No. 107858, 51. MR 4281772, DOI 10.1016/j.aim.2021.107858
- Shun-ichi Kimura, Fractional intersection and bivariant theory, Comm. Algebra 20 (1992), no. 1, 285–302. MR 1145334, DOI 10.1080/00927879208824340
- Martijn Kool and Richard Thomas, Reduced classes and curve counting on surfaces I: theory, Algebr. Geom. 1 (2014), no. 3, 334–383. MR 3238154, DOI 10.14231/AG-2014-017
- Andrew Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999), no. 3, 495–536. MR 1719823, DOI 10.1007/s002220050351
- Andrew Kresch, On the geometry of Deligne-Mumford stacks, Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 259–271. MR 2483938, DOI 10.1090/pspum/080.1/2483938
- M. Levine and F. Morel, Algebraic cobordism, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR 2286826
- Jun Li and Gang Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), no. 1, 119–174. MR 1467172, DOI 10.1090/S0894-0347-98-00250-1
- Max Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom. 15 (2006), no. 1, 175–206. MR 2177199, DOI 10.1090/S1056-3911-05-00418-2
- D. Maulik, R. Pandharipande, and R. P. Thomas, Curves on $K3$ surfaces and modular forms, J. Topol. 3 (2010), no. 4, 937–996. With an appendix by A. Pixton. MR 2746343, DOI 10.1112/jtopol/jtq030
- J. Oh and R. Thomas, Counting sheaves on Calabi-Yau fourfolds, I, arXiv:2009.05542, 2020.
- Tony Pantev, Bertrand Toën, Michel Vaquié, and Gabriele Vezzosi, Shifted symplectic structures, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 271–328. MR 3090262, DOI 10.1007/s10240-013-0054-1
- Michail Savvas, Cosection localization and vanishing for virtual fundamental classes of d-manifolds, Adv. Math. 398 (2022), Paper No. 108232, 34. MR 4383010, DOI 10.1016/j.aim.2022.108232
- Timo Schürg, Bertrand Toën, and Gabriele Vezzosi, Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories for maps and complexes, J. Reine Angew. Math. 702 (2015), 1–40. MR 3341464, DOI 10.1515/crelle-2013-0037
- Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu/tag/085P.
- R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on $K3$ fibrations, J. Differential Geom. 54 (2000), no. 2, 367–438. MR 1818182, DOI 10.4310/jdg/1214341649
- Burt Totaro, The Chow ring of a classifying space, Algebraic $K$-theory (Seattle, WA, 1997) Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 249–281. MR 1743244, DOI 10.1090/pspum/067/1743244
- Bertrand Toën and Michel Vaquié, Moduli of objects in dg-categories, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 3, 387–444 (English, with English and French summaries). MR 2493386, DOI 10.1016/j.ansens.2007.05.001
- Alexander Vishik, Stable and unstable operations in algebraic cobordism, Ann. Sci. Éc. Norm. Supér. (4) 52 (2019), no. 3, 561–630 (English, with English and French summaries). MR 3982873, DOI 10.24033/asens.2393
- Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), no. 3, 613–670. MR 1005008, DOI 10.1007/BF01388892
References
- David Anderson, $K$-theoretic Chern class formulas for vexillary degeneracy loci, Adv. Math. 350 (2019), 440–485. MR 3947650, DOI 10.1016/j.aim.2019.04.049
- Dave Anderson and Sam Payne, Operational $K$-theory, Doc. Math. 20 (2015), 357–399. MR 3398716
- Kai Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307–1338. MR 2600874, DOI 10.4007/annals.2009.170.1307
- K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88. MR 1437495, DOI 10.1007/s002220050136
- Oren Ben-Bassat, Christopher Brav, Vittoria Bussi, and Dominic Joyce, A “Darboux theorem” for shifted symplectic structures on derived Artin stacks, with applications, Geom. Topol. 19 (2015), no. 3, 1287–1359. MR 3352237, DOI 10.2140/gt.2015.19.1287
- Dennis Borisov and Dominic Joyce, Virtual fundamental classes for moduli spaces of sheaves on Calabi-Yau four-folds, Geom. Topol. 21 (2017), no. 6, 3231–3311. MR 3692967, DOI 10.2140/gt.2017.21.3231
- Christopher Brav, Vittoria Bussi, and Dominic Joyce, A Darboux theorem for derived schemes with shifted symplectic structure, J. Amer. Math. Soc. 32 (2019), no. 2, 399–443. MR 3904157, DOI 10.1090/jams/910
- Ragnar-Olaf Buchweitz and Hubert Flenner, A semiregularity map for modules and applications to deformations, Compositio Math. 137 (2003), no. 2, 135–210. MR 1985003, DOI 10.1023/A:1023999012081
- Yalong Cao, Jacob Gross, and Dominic Joyce, Orientability of moduli spaces of ${\mathrm {Spin}}(7)$-instantons and coherent sheaves on Calabi-Yau 4-folds, Adv. Math. 368 (2020), 107134, 60. MR 4085139, DOI 10.1016/j.aim.2020.107134
- Yalong Cao and Naichung Conan Leung, Relative Donaldson-Thomas theory for Calabi-Yau 4-folds, Trans. Amer. Math. Soc. 369 (2017), no. 9, 6631–6659. MR 3660236, DOI 10.1090/tran/7002
- Yalong Cao, Davesh Maulik, and Yukinobu Toda, Genus zero Gopakumar-Vafa type invariants for Calabi-Yau 4-folds, Adv. Math. 338 (2018), 41–92. MR 3861701, DOI 10.1016/j.aim.2018.08.013
- Yalong Cao, Davesh Maulik, and Yukinobu Toda, Stable pairs and Gopakumar-Vafa type invariants for Calabi-Yau 4-folds, J. Eur. Math. Soc. (JEMS) 24 (2022), no. 2, 527–581. MR 4382478, DOI 10.4171/jems/1110
- Dan Edidin and William Graham, Characteristic classes and quadric bundles, Duke Math. J. 78 (1995), no. 2, 277–299. MR 1333501, DOI 10.1215/S0012-7094-95-07812-0
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- Daniel Huybrechts and Richard P. Thomas, Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes, Math. Ann. 346 (2010), no. 3, 545–569. MR 2578562, DOI 10.1007/s00208-009-0397-6
- Michi-aki Inaba, Toward a definition of moduli of complexes of coherent sheaves on a projective scheme, J. Math. Kyoto Univ. 42 (2002), no. 2, 317–329. MR 1966840, DOI 10.1215/kjm/1250283873
- Young-Hoon Kiem, Localizing virtual fundamental cycles for semi-perfect obstruction theories, Internat. J. Math. 29 (2018), no. 4, 1850032, 30. MR 3797199, DOI 10.1142/S0129167X18500325
- Young-Hoon Kiem and Jun Li, Localizing virtual cycles by cosections, J. Amer. Math. Soc. 26 (2013), no. 4, 1025–1050. MR 3073883, DOI 10.1090/S0894-0347-2013-00768-7
- Young-Hoon Kiem and Jun Li, Localizing virtual structure sheaves by cosections, Int. Math. Res. Not. IMRN 22 (2020), 8387–8417. MR 4216692
- Young-Hoon Kiem and Jun Li, Quantum singularity theory via cosection localization, J. Reine Angew. Math. 766 (2020), 73–107. MR 4145203, DOI 10.1515/crelle-2019-0018
- Young-Hoon Kiem and Hyeonjun Park, Virtual intersection theories, Adv. Math. 388 (2021), Paper No. 107858, 51. MR 4281772, DOI 10.1016/j.aim.2021.107858
- Shun-ichi Kimura, Fractional intersection and bivariant theory, Comm. Algebra 20 (1992), no. 1, 285–302. MR 1145334, DOI 10.1080/00927879208824340
- Martijn Kool and Richard Thomas, Reduced classes and curve counting on surfaces I: theory, Algebr. Geom. 1 (2014), no. 3, 334–383. MR 3238154, DOI 10.14231/AG-2014-017
- Andrew Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999), no. 3, 495–536. MR 1719823, DOI 10.1007/s002220050351
- Andrew Kresch, On the geometry of Deligne-Mumford stacks, Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 259–271. MR 2483938, DOI 10.1090/pspum/080.1/2483938
- M. Levine and F. Morel, Algebraic cobordism, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR 2286826
- Jun Li and Gang Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), no. 1, 119–174. MR 1467172, DOI 10.1090/S0894-0347-98-00250-1
- Max Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom. 15 (2006), no. 1, 175–206. MR 2177199, DOI 10.1090/S1056-3911-05-00418-2
- D. Maulik, R. Pandharipande, and R. P. Thomas, Curves on $K3$ surfaces and modular forms, J. Topol. 3 (2010), no. 4, 937–996. With an appendix by A. Pixton. MR 2746343, DOI 10.1112/jtopol/jtq030
- J. Oh and R. Thomas, Counting sheaves on Calabi-Yau fourfolds, I, arXiv:2009.05542, 2020.
- Tony Pantev, Bertrand Toën, Michel Vaquié, and Gabriele Vezzosi, Shifted symplectic structures, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 271–328. MR 3090262, DOI 10.1007/s10240-013-0054-1
- Michail Savvas, Cosection localization and vanishing for virtual fundamental classes of d-manifolds, Adv. Math. 398 (2022), Paper No. 108232, 34. MR 4383010, DOI 10.1016/j.aim.2022.108232
- Timo Schürg, Bertrand Toën, and Gabriele Vezzosi, Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories for maps and complexes, J. Reine Angew. Math. 702 (2015), 1–40. MR 3341464, DOI 10.1515/crelle-2013-0037
- Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu/tag/085P.
- R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on $K3$ fibrations, J. Differential Geom. 54 (2000), no. 2, 367–438. MR 1818182
- Burt Totaro, The Chow ring of a classifying space, Algebraic $K$-theory (Seattle, WA, 1997) Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 249–281. MR 1743244, DOI 10.1090/pspum/067/1743244
- Bertrand Toën and Michel Vaquié, Moduli of objects in dg-categories, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 3, 387–444 (English, with English and French summaries). MR 2493386, DOI 10.1016/j.ansens.2007.05.001
- Alexander Vishik, Stable and unstable operations in algebraic cobordism, Ann. Sci. Éc. Norm. Supér. (4) 52 (2019), no. 3, 561–630 (English, with English and French summaries). MR 3982873, DOI 10.24033/asens.2393
- Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), no. 3, 613–670. MR 1005008, DOI 10.1007/BF01388892
Additional Information
Young-Hoon Kiem
Affiliation:
School of Mathematics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemum-gu, Seoul 02455, South Korea
MR Author ID:
658275
ORCID:
0000-0002-9813-5450
Email:
kiem@kias.re.kr
Hyeonjun Park
Affiliation:
School of Mathematics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemum-gu, Seoul 02455, South Korea
MR Author ID:
1447156
Email:
hyeonjunpark@kias.re.kr
Received by editor(s):
March 15, 2021
Received by editor(s) in revised form:
July 26, 2022, and August 12, 2022
Published electronically:
May 3, 2023
Additional Notes:
This work was partially supported by Korea NRF grant NRF-2020R1A4A3079066 and 2021R1F1A1046556
Article copyright:
© Copyright 2023
University Press, Inc.