Projective manifolds whose tangent bundle contains a strictly nef subsheaf
Authors:
Jie Liu, Wenhao Ou and Xiaokui Yang
Journal:
J. Algebraic Geom. 33 (2024), 1-53
DOI:
https://doi.org/10.1090/jag/807
Published electronically:
October 11, 2022
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Suppose that $X$ is a projective manifold whose tangent bundle $T_X$ contains a locally free strictly nef subsheaf. We prove that $X$ is isomorphic to either a projective space or a projective bundle over a hyperbolic manifold of general type. Moreover, if the fundamental group $\pi _1(X)$ is virtually solvable, then $X$ is isomorphic to a projective space.
References
- Carolina Araujo and Stéphane Druel, On codimension 1 del Pezzo foliations on varieties with mild singularities, Math. Ann. 360 (2014), no. 3-4, 769–798. MR 3273645, DOI 10.1007/s00208-014-1053-3
- Carolina Araujo, Stéphane Druel, and Sándor J. Kovács, Cohomological characterizations of projective spaces and hyperquadrics, Invent. Math. 174 (2008), no. 2, 233–253. MR 2439607, DOI 10.1007/s00222-008-0130-1
- Marian Aprodu, Stefan Kebekus, and Thomas Peternell, Galois coverings and endomorphisms of projective varieties, Math. Z. 260 (2008), no. 2, 431–449. MR 2429621, DOI 10.1007/s00209-007-0282-5
- Carolina Araujo, Rational curves of minimal degree and characterizations of projective spaces, Math. Ann. 335 (2006), no. 4, 937–951. MR 2232023, DOI 10.1007/s00208-006-0775-2
- Marco Andreatta and Jarosław A. Wiśniewski, On manifolds whose tangent bundle contains an ample subbundle, Invent. Math. 146 (2001), no. 1, 209–217. MR 1859022, DOI 10.1007/PL00005808
- Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013), no. 2, 201–248. MR 3019449, DOI 10.1090/S1056-3911-2012-00574-8
- Indranil Biswas, Semistability and restrictions of tangent bundle to curves, Geom. Dedicata 142 (2009), 37–46. MR 2545454, DOI 10.1007/s10711-009-9356-3
- Yohan Brunebarbe, Bruno Klingler, and Burt Totaro, Symmetric differentials and the fundamental group, Duke Math. J. 162 (2013), no. 14, 2797–2813. MR 3127814, DOI 10.1215/00127094-2381442
- Shigetoshi Bando and Yum-Tong Siu, Stable sheaves and Einstein-Hermitian metrics, Geometry and analysis on complex manifolds, World Sci. Publ., River Edge, NJ, 1994, pp. 39–50. MR 1463962
- Frédéric Campana, Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. Soc. Math. France 122 (1994), no. 2, 255–284 (French, with English and French summaries). MR 1273904, DOI 10.24033/bsmf.2232
- Fréderic Campana, Benoît Claudon, and Philippe Eyssidieux, Représentations linéaires des groupes kählériens: factorisations et conjecture de Shafarevich linéaire, Compos. Math. 151 (2015), no. 2, 351–376 (French, with English and French summaries). MR 3314830, DOI 10.1112/S0010437X14007751
- Koji Cho, Yoichi Miyaoka, and N. I. Shepherd-Barron, Characterizations of projective space and applications to complex symplectic manifolds, Higher dimensional birational geometry (Kyoto, 1997) Adv. Stud. Pure Math., vol. 35, Math. Soc. Japan, Tokyo, 2002, pp. 1–88. MR 1929792, DOI 10.2969/aspm/03510001
- Frédéric Campana and Thomas Peternell, Projective manifolds whose tangent bundles are numerically effective, Math. Ann. 289 (1991), no. 1, 169–187. MR 1087244, DOI 10.1007/BF01446566
- Frédéric Campana and Thomas Peternell, $4$-folds with numerically effective tangent bundles and second Betti numbers greater than one, Manuscripta Math. 79 (1993), no. 3-4, 225–238. MR 1223018, DOI 10.1007/BF02568341
- Frédéric Campana and Thomas Peternell, Rational curves and ampleness properties of the tangent bundle of algebraic varieties, Manuscripta Math. 97 (1998), no. 1, 59–74. MR 1642626, DOI 10.1007/s002290050085
- Ya Deng, A note on the Simpson correspondence for semistable Higgs bundles, Pure Appl. Math. Q. 17 (2021), no. 5, 1899–1911. MR 4376097, DOI 10.4310/PAMQ.2021.v17.n5.a8
- S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1–26. MR 765366, DOI 10.1112/plms/s3-50.1.1
- Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom. 3 (1994), no. 2, 295–345. MR 1257325
- Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider, Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math. 12 (2001), no. 6, 689–741. MR 1875649, DOI 10.1142/S0129167X01000861
- Stéphane Druel, Caractérisation de l’espace projectif, Manuscripta Math. 115 (2004), no. 1, 19–30 (French). MR 2092774, DOI 10.1007/s00229-004-0479-4
- Georges Elencwajg, Brauer group of fibrations and symmetric products of curves, Proc. Amer. Math. Soc. 94 (1985), no. 4, 597–602. MR 792268, DOI 10.1090/S0002-9939-1985-0792268-9
- Takao Fujita, On polarized manifolds whose adjoint bundles are not semipositive, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 167–178. MR 946238, DOI 10.2969/aspm/01010167
- Daniel Greb, Stefan Kebekus, and Thomas Peternell, Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J. 165 (2016), no. 10, 1965–2004. MR 3522654, DOI 10.1215/00127094-3450859
- Daniel Greb, Stefan Kebekus, and Thomas Peternell, Projective flatness over klt spaces and uniformisation of varieties with nef anti-canonical divisor, J. Algebraic Geom., 31 (2022), no. 3, 467–496.
- Daniel Greb, Stefan Kebekus, and Thomas Peternell, Projectively flat klt varieties, J. Éc. polytech. Math. 8 (2021), 1005–1036 (English, with English and French summaries). MR 4263792, DOI 10.5802/jep.164
- A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. 8 (1961), 222 (French). MR 217084
- Robin Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin-New York, 1970. Notes written in collaboration with C. Musili. MR 282977, DOI 10.1007/BFb0067839
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Andreas Höring and Carla Novelli, Mori contractions of maximal length, Publ. Res. Inst. Math. Sci. 49 (2013), no. 1, 215–228. MR 3030002, DOI 10.4171/PRIMS/103
- Andreas Höring and Thomas Peternell, Algebraic integrability of foliations with numerically trivial canonical bundle, Invent. Math. 216 (2019), no. 2, 395–419. MR 3953506, DOI 10.1007/s00222-018-00853-2
- Jun-Muk Hwang, Rigidity of rational homogeneous spaces, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 613–626. MR 2275613
- Amit Hogadi and Chenyang Xu, Degenerations of rationally connected varieties, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3931–3949. MR 2491906, DOI 10.1090/S0002-9947-09-04715-1
- Akihiro Kanemitsu, Fano 5-folds with nef tangent bundles, Math. Res. Lett. 24 (2017), no. 5, 1453–1475. MR 3747171, DOI 10.4310/MRL.2017.v24.n5.a6
- Stefan Kebekus, Families of singular rational curves, J. Algebraic Geom. 11 (2002), no. 2, 245–256. MR 1874114, DOI 10.1090/S1056-3911-01-00308-3
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- János Kollár, Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993), no. 1, 177–215. MR 1223229, DOI 10.1007/BF01244307
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3
- János Kollár, Simultaneous normalization and algebra husks, Asian J. Math. 15 (2011), no. 3, 437–449. MR 2838215, DOI 10.4310/AJM.2011.v15.n3.a6
- Kazuji Kubota, Ample sheaves, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 17 (1970), 421–430. MR 292849
- Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471, DOI 10.1007/978-3-642-18808-4
- Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR 2095472, DOI 10.1007/978-3-642-18808-4
- Qifeng Li, Smooth projective horospherical varieties with nef tangent bundles, Indiana Univ. Math. J. 66 (2017), no. 6, 1879–1893. MR 3744812, DOI 10.1512/iumj.2017.66.6265
- Jie Liu, Characterization of projective spaces and $\Bbb P^r$-bundles as ample divisors, Nagoya Math. J. 233 (2019), 155–169. MR 3901634, DOI 10.1017/nmj.2017.31
- Duo Li, Wenhao Ou, and Xiaokui Yang, On projective varieties with strictly nef tangent bundles, J. Math. Pures Appl. (9) 128 (2019), 140–151 (English, with English and French summaries). MR 3980847, DOI 10.1016/j.matpur.2019.04.007
- Frank Loray, Jorge Vitório Pereira, and Frédéric Touzet, Singular foliations with trivial canonical class, Invent. Math. 213 (2018), no. 3, 1327–1380. MR 3842065, DOI 10.1007/s00222-018-0806-0
- Ngaiming Mok, The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature, J. Differential Geom. 27 (1988), no. 2, 179–214. MR 925119
- Ngaiming Mok, On Fano manifolds with nef tangent bundles admitting 1-dimensional varieties of minimal rational tangents, Trans. Amer. Math. Soc. 354 (2002), no. 7, 2639–2658. MR 1895197, DOI 10.1090/S0002-9947-02-02953-7
- Shigefumi Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593–606. MR 554387, DOI 10.2307/1971241
- Roberto Muñoz, Gianluca Occhetta, Luis E. Solá Conde, Kiwamu Watanabe, and Jarosław A. Wiśniewski, A survey on the Campana-Peternell conjecture, Rend. Istit. Mat. Univ. Trieste 47 (2015), 127–185. MR 3456582, DOI 10.13137/0049-4704/11223
- V. B. Mehta and A. Ramanathan, Restriction of stable sheaves and representations of the fundamental group, Invent. Math. 77 (1984), no. 1, 163–172. MR 751136, DOI 10.1007/BF01389140
- V. B. Mehta and A. Ramanathan, Semistable sheaves on projective varieties and their restriction to curves, Math. Ann. 258 (1981/82), no. 3, 213–224. MR 649194, DOI 10.1007/BF01450677
- Noboru Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004. MR 2104208
- M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 82 (1965), 540–567. MR 184252, DOI 10.2307/1970710
- R. Pandharipande, Convex rationally connected varieties, Proc. Amer. Math. Soc. 141 (2013), no. 5, 1539–1543. MR 3020841, DOI 10.1090/S0002-9939-2012-11429-7
- Th. Peternell, Minimal varieties with trivial canonical classes. I, Math. Z. 217 (1994), no. 3, 377–405. MR 1306667, DOI 10.1007/BF02571950
- Thomas Peternell, Manifolds of semi-positive curvature, Transcendental methods in algebraic geometry (Cetraro, 1994) Lecture Notes in Math., vol. 1646, Springer, Berlin, 1996, pp. 98–142. MR 1603620, DOI 10.1007/BFb0094303
- Jorge Vitório Pereira and Frédéric Touzet, Foliations with vanishing Chern classes, Bull. Braz. Math. Soc. (N.S.) 44 (2013), no. 4, 731–754. MR 3167130, DOI 10.1007/s00574-013-0032-8
- Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. MR 1179076, DOI 10.1007/BF02699491
- S. Subramanian, Mumford’s example and a general construction, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), no. 3, 197–208. MR 1032705, DOI 10.1007/BF02864391
- Yum Tong Siu and Shing Tung Yau, Compact Kähler manifolds of positive bisectional curvature, Invent. Math. 59 (1980), no. 2, 189–204. MR 577360, DOI 10.1007/BF01390043
- K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S257–S293. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861491, DOI 10.1002/cpa.3160390714
- J. M. Wahl, A cohomological characterization of $\textbf {P}^{n}$, Invent. Math. 72 (1983), no. 2, 315–322. MR 700774, DOI 10.1007/BF01389326
- Kiwamu Watanabe, Fano 5-folds with nef tangent bundles and Picard numbers greater than one, Math. Z. 276 (2014), no. 1-2, 39–49. MR 3150191, DOI 10.1007/s00209-013-1185-2
- Katsutoshi Yamanoi, On fundamental groups of algebraic varieties and value distribution theory, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 2, 551–563 (English, with English and French summaries). MR 2667786, DOI 10.5802/jep.164
References
- Carolina Araujo and Stéphane Druel, On codimension 1 del Pezzo foliations on varieties with mild singularities, Math. Ann. 360 (2014), no. 3-4, 769–798. MR 3273645, DOI 10.1007/s00208-014-1053-3
- Carolina Araujo, Stéphane Druel, and Sándor J. Kovács, Cohomological characterizations of projective spaces and hyperquadrics, Invent. Math. 174 (2008), no. 2, 233–253. MR 2439607, DOI 10.1007/s00222-008-0130-1
- Marian Aprodu, Stefan Kebekus, and Thomas Peternell, Galois coverings and endomorphisms of projective varieties, Math. Z. 260 (2008), no. 2, 431–449. MR 2429621, DOI 10.1007/s00209-007-0282-5
- Carolina Araujo, Rational curves of minimal degree and characterizations of projective spaces, Math. Ann. 335 (2006), no. 4, 937–951. MR 2232023, DOI 10.1007/s00208-006-0775-2
- Marco Andreatta and Jarosław A. Wiśniewski, On manifolds whose tangent bundle contains an ample subbundle, Invent. Math. 146 (2001), no. 1, 209–217. MR 1859022, DOI 10.1007/PL00005808
- Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013), no. 2, 201–248. MR 3019449, DOI 10.1090/S1056-3911-2012-00574-8
- Indranil Biswas, Semistability and restrictions of tangent bundle to curves, Geom. Dedicata 142 (2009), 37–46. MR 2545454, DOI 10.1007/s10711-009-9356-3
- Yohan Brunebarbe, Bruno Klingler, and Burt Totaro, Symmetric differentials and the fundamental group, Duke Math. J. 162 (2013), no. 14, 2797–2813. MR 3127814, DOI 10.1215/00127094-2381442
- Shigetoshi Bando and Yum-Tong Siu, Stable sheaves and Einstein-Hermitian metrics, Geometry and analysis on complex manifolds, World Sci. Publ., River Edge, NJ, 1994, pp. 39–50. MR 1463962
- Frédéric Campana, Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. Soc. Math. France 122 (1994), no. 2, 255–284 (French, with English and French summaries). MR 1273904
- Fréderic Campana, Benoît Claudon, and Philippe Eyssidieux, Représentations linéaires des groupes kählériens: factorisations et conjecture de Shafarevich linéaire, Compos. Math. 151 (2015), no. 2, 351–376 (French, with English and French summaries). MR 3314830, DOI 10.1112/S0010437X14007751
- Koji Cho, Yoichi Miyaoka, and N. I. Shepherd-Barron, Characterizations of projective space and applications to complex symplectic manifolds, Higher dimensional birational geometry (Kyoto, 1997) Adv. Stud. Pure Math., vol. 35, Math. Soc. Japan, Tokyo, 2002, pp. 1–88. MR 1929792, DOI 10.2969/aspm/03510001
- Frédéric Campana and Thomas Peternell, Projective manifolds whose tangent bundles are numerically effective, Math. Ann. 289 (1991), no. 1, 169–187. MR 1087244, DOI 10.1007/BF01446566
- Frédéric Campana and Thomas Peternell, $4$-folds with numerically effective tangent bundles and second Betti numbers greater than one, Manuscripta Math. 79 (1993), no. 3-4, 225–238. MR 1223018, DOI 10.1007/BF02568341
- Frédéric Campana and Thomas Peternell, Rational curves and ampleness properties of the tangent bundle of algebraic varieties, Manuscripta Math. 97 (1998), no. 1, 59–74. MR 1642626, DOI 10.1007/s002290050085
- Ya Deng, A note on the Simpson correspondence for semistable Higgs bundles, Pure Appl. Math. Q. 17 (2021), no. 5, 1899–1911. MR 4376097
- S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1–26. MR 765366, DOI 10.1112/plms/s3-50.1.1
- Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom. 3 (1994), no. 2, 295–345. MR 1257325
- Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider, Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math. 12 (2001), no. 6, 689–741. MR 1875649, DOI 10.1142/S0129167X01000861
- Stéphane Druel, Caractérisation de l’espace projectif, Manuscripta Math. 115 (2004), no. 1, 19–30 (French). MR 2092774, DOI 10.1007/s00229-004-0479-4
- Georges Elencwajg, Brauer group of fibrations and symmetric products of curves, Proc. Amer. Math. Soc. 94 (1985), no. 4, 597–602. MR 792268, DOI 10.2307/2044871
- Takao Fujita, On polarized manifolds whose adjoint bundles are not semipositive, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 167–178. MR 946238, DOI 10.2969/aspm/01010167
- Daniel Greb, Stefan Kebekus, and Thomas Peternell, Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J. 165 (2016), no. 10, 1965–2004. MR 3522654, DOI 10.1215/00127094-3450859
- Daniel Greb, Stefan Kebekus, and Thomas Peternell, Projective flatness over klt spaces and uniformisation of varieties with nef anti-canonical divisor, J. Algebraic Geom., 31 (2022), no. 3, 467–496.
- Daniel Greb, Stefan Kebekus, and Thomas Peternell, Projectively flat klt varieties, J. Éc. polytech. Math. 8 (2021), 1005–1036 (English, with English and French summaries). MR 4263792, DOI 10.5802/jep.164
- A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. 8 (1961), 222 (French). MR 217084
- Robin Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin-New York, 1970. Notes written in collaboration with C. Musili. MR 0282977
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Andreas Höring and Carla Novelli, Mori contractions of maximal length, Publ. Res. Inst. Math. Sci. 49 (2013), no. 1, 215–228. MR 3030002, DOI 10.4171/PRIMS/103
- Andreas Höring and Thomas Peternell, Algebraic integrability of foliations with numerically trivial canonical bundle, Invent. Math. 216 (2019), no. 2, 395–419. MR 3953506, DOI 10.1007/s00222-018-00853-2
- Jun-Muk Hwang, Rigidity of rational homogeneous spaces, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 613–626. MR 2275613
- Amit Hogadi and Chenyang Xu, Degenerations of rationally connected varieties, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3931–3949. MR 2491906, DOI 10.1090/S0002-9947-09-04715-1
- Akihiro Kanemitsu, Fano 5-folds with nef tangent bundles, Math. Res. Lett. 24 (2017), no. 5, 1453–1475. MR 3747171, DOI 10.4310/MRL.2017.v24.n5.a6
- Stefan Kebekus, Families of singular rational curves, J. Algebraic Geom. 11 (2002), no. 2, 245–256. MR 1874114, DOI 10.1090/S1056-3911-01-00308-3
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- János Kollár, Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993), no. 1, 177–215. MR 1223229, DOI 10.1007/BF01244307
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3
- János Kollár, Simultaneous normalization and algebra husks, Asian J. Math. 15 (2011), no. 3, 437–449. MR 2838215, DOI 10.4310/AJM.2011.v15.n3.a6
- Kazuji Kubota, Ample sheaves, J. Fac. Sci. Univ. Tokyo Sect. I A Math. 17 (1970), 421–430. MR 0292849
- Robert Lazarsfeld, Positivity in algebraic geometry. I: Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. MR 2095471, DOI 10.1007/978-3-642-18808-4
- Robert Lazarsfeld, Positivity in algebraic geometry. II: Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. MR 2095472, DOI 10.1007/978-3-642-18808-4
- Qifeng Li, Smooth projective horospherical varieties with nef tangent bundles, Indiana Univ. Math. J. 66 (2017), no. 6, 1879–1893. MR 3744812, DOI 10.1512/iumj.2017.66.6265
- Jie Liu, Characterization of projective spaces and $\mathbb {P}^r$-bundles as ample divisors, Nagoya Math. J. 233 (2019), 155–169. MR 3901634, DOI 10.1017/nmj.2017.31
- Duo Li, Wenhao Ou, and Xiaokui Yang, On projective varieties with strictly nef tangent bundles, J. Math. Pures Appl. (9) 128 (2019), 140–151 (English, with English and French summaries). MR 3980847, DOI 10.1016/j.matpur.2019.04.007
- Frank Loray, Jorge Vitório Pereira, and Frédéric Touzet, Singular foliations with trivial canonical class, Invent. Math. 213 (2018), no. 3, 1327–1380. MR 3842065, DOI 10.1007/s00222-018-0806-0
- Ngaiming Mok, The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature, J. Differential Geom. 27 (1988), no. 2, 179–214. MR 925119
- Ngaiming Mok, On Fano manifolds with nef tangent bundles admitting 1-dimensional varieties of minimal rational tangents, Trans. Amer. Math. Soc. 354 (2002), no. 7, 2639–2658. MR 1895197, DOI 10.1090/S0002-9947-02-02953-7
- Shigefumi Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593–606. MR 554387, DOI 10.2307/1971241
- Roberto Muñoz, Gianluca Occhetta, Luis E. Solá-Conde, Kiwamu Watanabe, and Jarosław A. Wiśniewski, A survey on the Campana-Peternell conjecture, Rend. Istit. Mat. Univ. Trieste 47 (2015), 127–185. MR 3456582, DOI 10.13137/0049-4704/11223
- V. B. Mehta and A. Ramanathan, Restriction of stable sheaves and representations of the fundamental group, Invent. Math. 77 (1984), no. 1, 163–172. MR 751136, DOI 10.1007/BF01389140
- V. B. Mehta and A. Ramanathan, Semistable sheaves on projective varieties and their restriction to curves, Math. Ann. 258 (1981/82), no. 3, 213–224. MR 649194, DOI 10.1007/BF01450677
- Noboru Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004. MR 2104208
- M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 82 (1965), 540–567. MR 184252, DOI 10.2307/1970710
- R. Pandharipande, Convex rationally connected varieties, Proc. Amer. Math. Soc. 141 (2013), no. 5, 1539–1543. MR 3020841, DOI 10.1090/S0002-9939-2012-11429-7
- Th. Peternell, Minimal varieties with trivial canonical classes. I, Math. Z. 217 (1994), no. 3, 377–405. MR 1306667, DOI 10.1007/BF02571950
- Thomas Peternell, Manifolds of semi-positive curvature, Transcendental methods in algebraic geometry (Cetraro, 1994) Lecture Notes in Math., vol. 1646, Springer, Berlin, 1996, pp. 98–142. MR 1603620, DOI 10.1007/BFb0094303
- Jorge Vitório Pereira and Frédéric Touzet, Foliations with vanishing Chern classes, Bull. Braz. Math. Soc. (N.S.) 44 (2013), no. 4, 731–754. MR 3167130, DOI 10.1007/s00574-013-0032-8
- Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. MR 1179076
- S. Subramanian, Mumford’s example and a general construction, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), no. 3, 197–208. MR 1032705, DOI 10.1007/BF02864391
- Yum Tong Siu and Shing Tung Yau, Compact Kähler manifolds of positive bisectional curvature, Invent. Math. 59 (1980), no. 2, 189–204. MR 577360, DOI 10.1007/BF01390043
- K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S257–S293. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861491, DOI 10.1002/cpa.3160390714
- J. M. Wahl, A cohomological characterization of ${\mathbf P}^{n}$, Invent. Math. 72 (1983), no. 2, 315–322. MR 700774, DOI 10.1007/BF01389326
- Kiwamu Watanabe, Fano 5-folds with nef tangent bundles and Picard numbers greater than one, Math. Z. 276 (2014), no. 1-2, 39–49. MR 3150191, DOI 10.1007/s00209-013-1185-2
- Katsutoshi Yamanoi, On fundamental groups of algebraic varieties and value distribution theory, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 2, 551–563 (English, with English and French summaries). MR 2667786, DOI 10.5802/jep.164
Additional Information
Jie Liu
Affiliation:
Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
ORCID:
0000-0001-8131-5909
Email:
jliu@amss.ac.cn
Wenhao Ou
Affiliation:
Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
MR Author ID:
1089322
Email:
wenhaoou@amss.ac.cn
Xiaokui Yang
Affiliation:
Department of Mathematics and Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, People’s Republic of China
Email:
xkyang@mail.tsinghua.edu.cn
Received by editor(s):
June 24, 2021
Published electronically:
October 11, 2022
Additional Notes:
The first author was supported by the National Key R&D Program of China (No. 2021YFA1002300), the China Postdoctoral Science Foundation (2019M650873) and the NSFC grants (No. 11688101 and No. 12001521). The second author was supported by the National Key R&D Program of China (No. 2021YFA1002300). The third author was supported by NSFC grants (No. 12171262 and No. 12141101).
Article copyright:
© Copyright 2022
University Press, Inc.