The Chow rings of the moduli spaces of curves of genus 7, 8, and 9
Authors:
Samir Canning and Hannah Larson
Journal:
J. Algebraic Geom. 33 (2024), 55-116
DOI:
https://doi.org/10.1090/jag/818
Published electronically:
May 16, 2023
Full-text PDF
Abstract |
References |
Additional Information
Abstract: The rational Chow ring of the moduli space $\mathcal {M}_g$ of curves of genus $g$ is known for $g \leq 6$. Here, we determine the rational Chow rings of $\mathcal {M}_7, \mathcal {M}_8$, and $\mathcal {M}_9$ by showing they are tautological. The key ingredient is intersection theory on Hurwitz spaces of degree $4$ and $5$ covers of $\mathbb {P}^1$ via their associated vector bundles. The main focus of this paper is a detailed geometric analysis of special tetragonal and pentagonal covers whose associated vector bundles on $\mathbb {P}^1$ are highly unbalanced, expanding upon previous work of the authors in the more balanced case. In genus $9$, we use work of Mukai to present the locus of hexagonal curves as a global quotient stack, and, using equivariant intersection theory, we show its Chow ring is generated by restrictions of tautological classes.
References
- Samir Canning and Hannah Larson, The integral Picard groups of low-degree Hurwitz spaces, arXiv:2110.14727, 2021.
- Samir Canning and Hannah Larson, Tautological classes on low-degree Hurwitz spaces, arXiv:2103.09902, 2021.
- Samir Canning and Hannah Larson, Chow rings of low-degree Hurwitz spaces, J. Reine Angew. Math. 789 (2022), 103–152. MR 4460165, DOI 10.1515/crelle-2022-0024
- G. Casnati and T. Ekedahl, Covers of algebraic varieties. I. A general structure theorem, covers of degree $3,4$ and Enriques surfaces, J. Algebraic Geom. 5 (1996), no. 3, 439–460. MR 1382731
- Gianfranco Casnati, Covers of algebraic varieties. II. Covers of degree $5$ and construction of surfaces, J. Algebraic Geom. 5 (1996), no. 3, 461–477. MR 1382732
- Gianfranco Casnati and Andrea Del Centina, A characterization of bielliptic curves and applications to their moduli spaces, Ann. Mat. Pura Appl. (4) 181 (2002), no. 2, 213–221. MR 1911936, DOI 10.1007/s102310100036
- Brian Conrad, Arithmetic moduli of generalized elliptic curves, J. Inst. Math. Jussieu 6 (2007), no. 2, 209–278. MR 2311664, DOI 10.1017/S1474748006000089
- Vincent Delecroix, Johannes Schmitt, and Jason van Zelm, admcycles—a Sage package for calculations in the tautological ring of the moduli space of stable curves, J. Softw. Algebra Geom. 11 (2021), no. 1, 89–112. MR 4387186, DOI 10.2140/jsag.2021.11.89
- Anand Deopurkar and Anand Patel, The Picard rank conjecture for the Hurwitz spaces of degree up to five, Algebra Number Theory 9 (2015), no. 2, 459–492. MR 3320849, DOI 10.2140/ant.2015.9.459
- Dan Edidin, Equivariant geometry and the cohomology of the moduli space of curves, Handbook of moduli. Vol. I, Adv. Lect. Math. (ALM), vol. 24, Int. Press, Somerville, MA, 2013, pp. 259–292. MR 3184166
- Carel Faber, Chow rings of moduli spaces of curves. I. The Chow ring of $\overline {\scr M}_3$, Ann. of Math. (2) 132 (1990), no. 2, 331–419. MR 1070600, DOI 10.2307/1971525
- Carel Faber, Chow rings of moduli spaces of curves. II. Some results on the Chow ring of $\overline {\scr M}_4$, Ann. of Math. (2) 132 (1990), no. 3, 421–449. MR 1078265, DOI 10.2307/1971526
- Carel Faber, A conjectural description of the tautological ring of the moduli space of curves, Moduli of curves and abelian varieties, Aspects Math., E33, Friedr. Vieweg, Braunschweig, 1999, pp. 109–129. MR 1722541
- John L. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (1985), no. 2, 215–249. MR 786348, DOI 10.2307/1971172
- E. Izadi, The Chow ring of the moduli space of curves of genus $5$, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 267–304. MR 1363060, DOI 10.1007/978-1-4612-4264-2_{1}0
- Uwe Jannsen, Motivic sheaves and filtrations on Chow groups, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 245–302. MR 1265533, DOI 10.1090/pspum/055.1/1265533
- Eric Larson, The integral Chow ring of $\overline M_2$, Algebr. Geom. 8 (2021), no. 3, 286–318. MR 4206438, DOI 10.14231/ag-2021-007
- Hannah K. Larson, Universal degeneracy classes for vector bundles on $\Bbb {P}^1$ bundles, Adv. Math. 380 (2021), Paper No. 107563, 20. MR 4200467, DOI 10.1016/j.aim.2021.107563
- Eduard Looijenga, On the tautological ring of ${\scr M}_g$, Invent. Math. 121 (1995), no. 2, 411–419. MR 1346214, DOI 10.1007/BF01884306
- Andrea Di Lorenzo, Damiano Fulghesu, and Angelo Vistoli, The integral Chow ring of the stack of smooth non-hyperelliptic curves of genus three, Trans. Amer. Math. Soc. 374 (2021), no. 8, 5583–5622. MR 4293781, DOI 10.1090/tran/8354
- David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271–328. MR 717614
- Atsushi Moriwaki, The $\Bbb Q$-Picard group of the moduli space of curves in positive characteristic, Internat. J. Math. 12 (2001), no. 5, 519–534. MR 1843864, DOI 10.1142/S0129167X01000964
- Shigeru Mukai, Curves and symmetric spaces, II, Ann. of Math. (2) 172 (2010), no. 3, 1539–1558. MR 2726093, DOI 10.4007/annals.2010.172.1539
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906, DOI 10.1007/978-3-642-57916-5
- Rahul Pandharipande, A calculus for the moduli space of curves, Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 459–487. MR 3821159, DOI 10.1090/pspum/097.1/01682
- Anand Patel and Ravi Vakil, On the Chow ring of the Hurwitz space of degree three covers of $\mathbb {P}^{1}$, arXiv:1505.04323, 2015.
- Nikola Penev and Ravi Vakil, The Chow ring of the moduli space of curves of genus six, Algebr. Geom. 2 (2015), no. 1, 123–136. MR 3322200, DOI 10.14231/AG-2015-006
- Martin Pikaart, An orbifold partition of $\overline M{}^n_g$, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 467–482. MR 1363067, DOI 10.1007/978-1-4612-4264-2_{1}7
- Aaron Pixton, DR.py, https://gitlab.com/jo314schmitt/admcycles/-/blob/master/admcycles/DR.py, 2020.
- Michael Sagraloff, Special linear series and syzygies of canonical curves of genus $9$, PhD thesis, Saarland University, 2005.
- Frank-Olaf Schreyer, Syzygies of canonical curves and special linear series, Math. Ann. 275 (1986), no. 1, 105–137. MR 849058, DOI 10.1007/BF01458587
- The Stacks Project authors, The Stacks Project, 2021, https://stacks.math.columbia.edu.
- W. A. Stein et al., Sage mathematics software (version 9.2), The Sage Development Team, 2020, http://www.sagemath.org.
- Burt Totaro, The Chow ring of a classifying space, Algebraic $K$-theory (Seattle, WA, 1997) Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 249–281. MR 1743244, DOI 10.1090/pspum/067/1743244
- Jason van Zelm, Nontautological bielliptic cycles, Pacific J. Math. 294 (2018), no. 2, 495–504. MR 3770123, DOI 10.2140/pjm.2018.294.495
- Angelo Vistoli, The Chow ring of $\scr M_2$. Appendix to “Equivariant intersection theory” [Invent. Math. 131 (1998), no. 3, 595–634; MR1614555 (99j:14003a)] by D. Edidin and W. Graham, Invent. Math. 131 (1998), no. 3, 635–644. MR 1614559, DOI 10.1007/s002220050215
References
- Samir Canning and Hannah Larson, The integral Picard groups of low-degree Hurwitz spaces, arXiv:2110.14727, 2021.
- Samir Canning and Hannah Larson, Tautological classes on low-degree Hurwitz spaces, arXiv:2103.09902, 2021.
- Samir Canning and Hannah Larson, Chow rings of low-degree Hurwitz spaces, J. Reine Angew. Math. 789 (2022), 103–152. MR 4460165, DOI 10.1515/crelle-2022-0024
- G. Casnati and T. Ekedahl, Covers of algebraic varieties. I. A general structure theorem, covers of degree $3,4$ and Enriques surfaces, J. Algebraic Geom. 5 (1996), no. 3, 439–460. MR 1382731
- Gianfranco Casnati, Covers of algebraic varieties. II. Covers of degree $5$ and construction of surfaces, J. Algebraic Geom. 5 (1996), no. 3, 461–477. MR 1382732
- Gianfranco Casnati and Andrea Del Centina, A characterization of bielliptic curves and applications to their moduli spaces, Ann. Mat. Pura Appl. (4) 181 (2002), no. 2, 213–221. MR 1911936, DOI 10.1007/s102310100036
- Brian Conrad, Arithmetic moduli of generalized elliptic curves, J. Inst. Math. Jussieu 6 (2007), no. 2, 209–278. MR 2311664, DOI 10.1017/S1474748006000089
- Vincent Delecroix, Johannes Schmitt, and Jason van Zelm, admcycles—a Sage package for calculations in the tautological ring of the moduli space of stable curves, J. Softw. Algebra Geom. 11 (2021), no. 1, 89–112. MR 4387186, DOI 10.2140/jsag.2021.11.89
- Anand Deopurkar and Anand Patel, The Picard rank conjecture for the Hurwitz spaces of degree up to five, Algebra Number Theory 9 (2015), no. 2, 459–492. MR 3320849, DOI 10.2140/ant.2015.9.459
- Dan Edidin, Equivariant geometry and the cohomology of the moduli space of curves, Handbook of Moduli. Vol. I, Adv. Lect. Math. (ALM), vol. 24, Int. Press, Somerville, MA, 2013, pp. 259–292. MR 3184166
- Carel Faber, Chow rings of moduli spaces of curves. I. The Chow ring of $\overline {\mathcal {M}}_3$, Ann. of Math. (2) 132 (1990), no. 2, 331–419. MR 1070600, DOI 10.2307/1971525
- Carel Faber, Chow rings of moduli spaces of curves. II. Some results on the Chow ring of $\overline {\mathcal {M}}_4$, Ann. of Math. (2) 132 (1990), no. 3, 421–449. MR 1078265, DOI 10.2307/1971526
- Carel Faber, A conjectural description of the tautological ring of the moduli space of curves, Moduli of curves and abelian varieties, Aspects Math., E33, Friedr. Vieweg, Braunschweig, 1999, pp. 109–129. MR 1722541
- John L. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (1985), no. 2, 215–249. MR 786348, DOI 10.2307/1971172
- E. Izadi, The Chow ring of the moduli space of curves of genus $5$, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 267–304. MR 1363060, DOI 10.1007/978-1-4612-4264-2_10
- Uwe Jannsen, Motivic sheaves and filtrations on Chow groups, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 245–302. MR 1265533
- Eric Larson, The integral Chow ring of $\overline M_2$, Algebr. Geom. 8 (2021), no. 3, 286–318. MR 4206438, DOI 10.14231/ag-2021-007
- Hannah K. Larson, Universal degeneracy classes for vector bundles on $\mathbb {P}^1$ bundles, Adv. Math. 380 (2021), Paper No. 107563, 20. MR 4200467, DOI 10.1016/j.aim.2021.107563
- Eduard Looijenga, On the tautological ring of ${\mathcal {M}}_g$, Invent. Math. 121 (1995), no. 2, 411–419. MR 1346214, DOI 10.1007/BF01884306
- Andrea Di Lorenzo, Damiano Fulghesu, and Angelo Vistoli, The integral Chow ring of the stack of smooth non-hyperelliptic curves of genus three, Trans. Amer. Math. Soc. 374 (2021), no. 8, 5583–5622. MR 4293781, DOI 10.1090/tran/8354
- David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271–328. MR 0717614
- Atsushi Moriwaki, The $\mathbb {Q}$-Picard group of the moduli space of curves in positive characteristic, Internat. J. Math. 12 (2001), no. 5, 519–534. MR 1843864, DOI 10.1142/S0129167X01000964
- Shigeru Mukai, Curves and symmetric spaces, II, Ann. of Math. (2) 172 (2010), no. 3, 1539–1558. MR 2726093, DOI 10.4007/annals.2010.172.1539
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906
- Rahul Pandharipande, A calculus for the moduli space of curves, Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 459–487. MR 3821159, DOI 10.4310/pamq.2015.v11.n4.a3
- Anand Patel and Ravi Vakil, On the Chow ring of the Hurwitz space of degree three covers of $\mathbb {P}^{1}$, arXiv:1505.04323, 2015.
- Nikola Penev and Ravi Vakil, The Chow ring of the moduli space of curves of genus six, Algebr. Geom. 2 (2015), no. 1, 123–136. MR 3322200, DOI 10.14231/AG-2015-006
- Martin Pikaart, An orbifold partition of $\overline M{}^n_g$, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 467–482. MR 1363067, DOI 10.1007/978-1-4612-4264-2_17
- Aaron Pixton, DR.py, https://gitlab.com/jo314schmitt/admcycles/-/blob/master/admcycles/DR.py, 2020.
- Michael Sagraloff, Special linear series and syzygies of canonical curves of genus $9$, PhD thesis, Saarland University, 2005.
- Frank-Olaf Schreyer, Syzygies of canonical curves and special linear series, Math. Ann. 275 (1986), no. 1, 105–137. MR 849058, DOI 10.1007/BF01458587
- The Stacks Project authors, The Stacks Project, 2021, https://stacks.math.columbia.edu.
- W. A. Stein et al., Sage mathematics software (version 9.2), The Sage Development Team, 2020, http://www.sagemath.org.
- Burt Totaro, The Chow ring of a classifying space, Algebraic $K$-theory (Seattle, WA, 1997) Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 249–281. MR 1743244, DOI 10.1090/pspum/067/1743244
- Jason van Zelm, Nontautological bielliptic cycles, Pacific J. Math. 294 (2018), no. 2, 495–504. MR 3770123, DOI 10.2140/pjm.2018.294.495
- Angelo Vistoli, The Chow ring of $\mathcal {M}_2$. Appendix to “Equivariant intersection theory” [Invent. Math. 131 (1998), no. 3, 595–634; MR1614555 (99j:14003a)] by D. Edidin and W. Graham, Invent. Math. 131 (1998), no. 3, 635–644. MR 1614559, DOI 10.1007/s002220050215
Additional Information
Samir Canning
Affiliation:
Department of Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
MR Author ID:
1445211
Email:
samir.canning@math.ethz.ch
Hannah Larson
Affiliation:
Department of Mathematics, Harvard University, One Oxford Street, Cambridge, Massachusetts 02138
MR Author ID:
1071917
Email:
hlarson@math.harvard.edu
Received by editor(s):
June 26, 2021
Received by editor(s) in revised form:
January 6, 2023
Published electronically:
May 16, 2023
Additional Notes:
During the preparation of this article, the first author was partially supported by NSF RTG grant DMS-1502651. The second author was supported by the Hertz Foundation and NSF GRFP under grant DGE-1656518.
Article copyright:
© Copyright 2023
University Press, Inc.