Global rigidity of the period mapping
Author:
Benson Farb
Journal:
J. Algebraic Geom. 33 (2024), 199-212
DOI:
https://doi.org/10.1090/jag/809
Published electronically:
October 24, 2022
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let ${\mathcal M}_{g,n}$ denote the moduli space of smooth, genus $g\geq 1$ curves with $n\geq 0$ marked points. Let ${\mathcal A}_h$ denote the moduli space of $h$-dimensional, principally polarized abelian varieties. Let $g\geq 3$ and $h\leq g$. If $F:{\mathcal M}_{g,n} \to {\mathcal A}_H$ is a nonholomorphic map, then $h=g$ and $F$ is the classical period mapping, assigning to a Riemann surface $X$ its Jacobian.
References
- Stergios Antonakoudis, Javier Aramayona, and Juan Souto, Holomorphic maps between moduli spaces, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 1, 217–228 (English, with English and French summaries). MR 3795477, DOI 10.5802/aif.3158
- Armand Borel and Raghavan Narasimhan, Uniqueness conditions for certain holomorphic mappings, Invent. Math. 2 (1967), 247–255. MR 209517, DOI 10.1007/BF01425403
- James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 164306, DOI 10.2307/2373037
- Gavril Farkas, Prym varieties and their moduli, Contributions to algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, pp. 215–255. MR 2976944, DOI 10.4171/114-1/8
- Helmut A. Hamm and Lê Dũng Tráng, Lefschetz theorems on quasiprojective varieties, Bull. Soc. Math. France 113 (1985), no. 2, 123–142 (English, with French summary). MR 820315, DOI 10.24033/bsmf.2023
- A. Javapeykar and D. Litt, Integral points on algebraic subvarieties of period domains: from number fields to finitely generated fields, arXiv:1907.13536v4, 2021.
- M. Korkmaz, The symplectic representation of the mapping class group is unique, arXiv:1108.3241, 2011.
- Shoshichi Kobayashi and Takushiro Ochiai, Satake compactification and the great Picard theorem, J. Math. Soc. Japan 23 (1971), 340–350. MR 296357, DOI 10.2969/jmsj/02320340
- Martin Möller, Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc. 19 (2006), no. 2, 327–344. MR 2188128, DOI 10.1090/S0894-0347-05-00512-6
- Curtis T. McMullen, Rigidity of Teichmüller curves, Math. Res. Lett. 16 (2009), no. 4, 647–649. MR 2525030, DOI 10.4310/MRL.2009.v16.n4.a7
- J. Mennicke, Zur Theorie der Siegelschen Modulgruppe, Math. Ann. 159 (1965), 115–129 (German). MR 181676, DOI 10.1007/BF01360285
- Junjiro Noguchi, Some problems in value distribution and hyperbolic manifolds, Sūrikaisekikenkyūsho K\B{o}kyūroku 819 (1993), 66–79. International Symposium “Holomorphic Mappings, Diophantine Geometry and Related Topics” (Kyoto, 1992). MR 1247069
- Masa-Hiko Sait\B{o}, Classification of nonrigid families of abelian varieties, Tohoku Math. J. (2) 45 (1993), no. 2, 159–189. MR 1215923, DOI 10.2748/tmj/1178225915
- C. Serván, On the uniqueness of the Prym map, in preparation.
References
- Stergios Antonakoudis, Javier Aramayona, and Juan Souto, Holomorphic maps between moduli spaces, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 1, 217–228 (English, with English and French summaries). MR 3795477
- Armand Borel and Raghavan Narasimhan, Uniqueness conditions for certain holomorphic mappings, Invent. Math. 2 (1967), 247–255. MR 209517, DOI 10.1007/BF01425403
- James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 164306, DOI 10.2307/2373037
- Gavril Farkas, Prym varieties and their moduli, Contributions to algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, pp. 215–255. MR 2976944, DOI 10.4171/114-1/8
- Helmut A. Hamm and Lê Dũng Tráng, Lefschetz theorems on quasiprojective varieties, Bull. Soc. Math. France 113 (1985), no. 2, 123–142 (English, with French summary). MR 820315
- A. Javapeykar and D. Litt, Integral points on algebraic subvarieties of period domains: from number fields to finitely generated fields, arXiv:1907.13536v4, 2021.
- M. Korkmaz, The symplectic representation of the mapping class group is unique, arXiv:1108.3241, 2011.
- Shoshichi Kobayashi and Takushiro Ochiai, Satake compactification and the great Picard theorem, J. Math. Soc. Japan 23 (1971), 340–350. MR 296357, DOI 10.2969/jmsj/02320340
- Martin Möller, Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc. 19 (2006), no. 2, 327–344. MR 2188128, DOI 10.1090/S0894-0347-05-00512-6
- Curtis T. McMullen, Rigidity of Teichmüller curves, Math. Res. Lett. 16 (2009), no. 4, 647–649. MR 2525030, DOI 10.4310/MRL.2009.v16.n4.a7
- J. Mennicke, Zur Theorie der Siegelschen Modulgruppe, Math. Ann. 159 (1965), 115–129 (German). MR 181676, DOI 10.1007/BF01360285
- Junjiro Noguchi, Some problems in value distribution and hyperbolic manifolds, Sūrikaisekikenkyūsho Kōkyūroku 819 (1993), 66–79. International Symposium “Holomorphic Mappings, Diophantine Geometry and Related Topics” (Kyoto, 1992). MR 1247069
- Masa-Hiko Saitō, Classification of nonrigid families of abelian varieties, Tohoku Math. J. (2) 45 (1993), no. 2, 159–189. MR 1215923, DOI 10.2748/tmj/1178225915
- C. Serván, On the uniqueness of the Prym map, in preparation.
Additional Information
Benson Farb
Affiliation:
Department of Mathematics, University of Chicago, Chicago, Illinois 60637
MR Author ID:
329207
Email:
bensonfarb@gmail.com
Received by editor(s):
June 26, 2021
Received by editor(s) in revised form:
March 13, 2022
Published electronically:
October 24, 2022
Additional Notes:
This work was supported in part by National Science Foundation Grant No. DMS-181772, the Eckhardt Faculty Fund, and the Jump Trading Mathlab Research Fund
Article copyright:
© Copyright 2022
University Press, Inc.