Eigenvalues and dynamical degrees of self-maps on abelian varieties
Author:
Fei Hu
Journal:
J. Algebraic Geom. 33 (2024), 265-293
DOI:
https://doi.org/10.1090/jag/806
Published electronically:
February 7, 2023
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $X$ be a smooth projective variety over an algebraically closed field, and $f\colon X\to X$ a surjective self-morphism of $X$. The $i$-th cohomological dynamical degree $\chi _i(f)$ is defined as the spectral radius of the pullback $f^{*}$ on the étale cohomology group $H^i_{\acute {\mathrm {e}}\mathrm {t}}(X, \mathbf {Q}_\ell )$ and the $k$-th numerical dynamical degree $\lambda _k(f)$ as the spectral radius of the pullback $f^{*}$ on the vector space $\mathsf {N}^k(X)_{\mathbf {R}}$ of real algebraic cycles of codimension $k$ on $X$ modulo numerical equivalence. Truong conjectured that $\chi _{2k}(f) = \lambda _k(f)$ for all $0 \le k \le \dim X$ as a generalization of Weil’s Riemann hypothesis. We prove this conjecture in the case of abelian varieties. In the course of the proof we also obtain a new parity result on the eigenvalues of self-maps of abelian varieties in prime characteristic, which is of independent interest.
References
- Nguyen-Bac Dang, Degrees of iterates of rational maps on normal projective varieties, Proc. Lond. Math. Soc. (3) 121 (2020), no. 5, 1268–1310. MR 4133708, DOI 10.1112/plms.12366
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258, DOI 10.1007/BF02684373
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520, DOI 10.1007/BF02684780
- Tien-Cuong Dinh, Suites d’applications méromorphes multivaluées et courants laminaires, J. Geom. Anal. 15 (2005), no. 2, 207–227 (French, with English summary). MR 2152480, DOI 10.1007/BF02922193
- Tien-Cuong Dinh and Nessim Sibony, Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math. (2) 161 (2005), no. 3, 1637–1644 (French, with English summary). MR 2180409, DOI 10.4007/annals.2005.161.1637
- Tien-Cuong Dinh and Nessim Sibony, Upper bound for the topological entropy of a meromorphic correspondence, Israel J. Math. 163 (2008), 29–44. MR 2391122, DOI 10.1007/s11856-008-0002-9
- Tien-Cuong Dinh and Nessim Sibony, Equidistribution problems in complex dynamics of higher dimension, Internat. J. Math. 28 (2017), no. 7, 1750057, 31. MR 3667901, DOI 10.1142/S0129167X17500574
- Andreas-Stephan Elsenhans and Jörg Jahnel, On the characteristic polynomial of the Frobenius on étale cohomology, Duke Math. J. 164 (2015), no. 11, 2161–2184. MR 3385131, DOI 10.1215/00127094-3129381
- Hélène Esnault and Vasudevan Srinivas, Algebraic versus topological entropy for surfaces over finite fields, Osaka J. Math. 50 (2013), no. 3, 827–846. MR 3129006
- Mihai Fulger and Brian Lehmann, Positive cones of dual cycle classes, Algebr. Geom. 4 (2017), no. 1, 1–28. MR 3592463, DOI 10.14231/AG-2017-001
- Mikhaïl Gromov, On the entropy of holomorphic maps, Enseign. Math. (2) 49 (2003), no. 3-4, 217–235. MR 2026895
- Roger A. Horn and Charles R. Johnson, Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2013. MR 2978290
- Fei Hu and Tuyen Trung Truong, A dynamical approach to generalized Weil’s Riemann hypothesis and semisimplicity, Preprint, arXiv:2102.04405, 2021.
- Fei Hu, Cohomological and numerical dynamical degrees on abelian varieties, Algebra Number Theory 13 (2019), no. 8, 1941–1958. MR 4017540, DOI 10.2140/ant.2019.13.1941
- Fei Hu, A theorem of Tits type for automorphism groups of projective varieties in arbitrary characteristic, Math. Ann. 377 (2020), no. 3-4, 1573–1602. With an appendix by Tomohide Terasoma. MR 4126902, DOI 10.1007/s00208-019-01812-9
- S. L. Kleiman, Algebraic cycles and the Weil conjectures, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 359–386. MR 292838
- H. C. Lee, Eigenvalues and canonical forms of matrices with quaternion coefficients, Proc. Roy. Irish Acad. Sect. A 52 (1949), 253–260. MR 36738
- J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 103–150. MR 861974
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1970. MR 282985
- Sheng Meng and De-Qi Zhang, Building blocks of polarized endomorphisms of normal projective varieties, Adv. Math. 325 (2018), 243–273. MR 3742591, DOI 10.1016/j.aim.2017.11.026
- Frans Oort, Endomorphism algebras of abelian varieties, Algebraic geometry and commutative algebra, Vol. II, Kinokuniya, Tokyo, 1988, pp. 469–502. MR 977774
- Frans Oort, Abelian varieties over finite fields, Higher-dimensional geometry over finite fields, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., vol. 16, IOS, Amsterdam, 2008, pp. 123–188. MR 2484079
- Peter O’Sullivan, Algebraic cycles on an abelian variety, J. Reine Angew. Math. 654 (2011), 1–81. MR 2795752, DOI 10.1515/CRELLE.2011.025
- Bjorn Poonen and Sergey Rybakov, Lattices in Tate modules, Proc. Natl. Acad. Sci. USA 118 (2021), no. 49, Paper No. e2113201118, 3. MR 4401250, DOI 10.1073/pnas.2113201118
- I. Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003. Corrected reprint of the 1975 original; With a foreword by M. J. Taylor. MR 1972204, DOI 10.1093/oso/9780198526735.001.0001
- Jean-Pierre Serre, Analogues kählériens de certaines conjectures de Weil, Ann. of Math. (2) 71 (1960), 392–394 (French). MR 112163, DOI 10.2307/1970088
- K. V. Shuddhodan, Constraints on the cohomological correspondence associated to a self map, Compos. Math. 155 (2019), no. 6, 1047–1056. MR 3949925, DOI 10.1112/s0010437x19007188
- Junecue Suh, Symmetry and parity in Frobenius action on cohomology, Compos. Math. 148 (2012), no. 1, 295–303. MR 2881317, DOI 10.1112/S0010437X11007056
- Shenghao Sun and Weizhe Zheng, Parity and symmetry in intersection and ordinary cohomology, Algebra Number Theory 10 (2016), no. 2, 235–307. MR 3477743, DOI 10.2140/ant.2016.10.235
- John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144. MR 206004, DOI 10.1007/BF01404549
- Tuyen Trung Truong, Relations between dynamical degrees, Weil’s Riemann hypothesis and the standard conjectures, Preprint, arXiv:1611.01124, 2016.
- Tuyen Trung Truong, Relative dynamical degrees of correspondences over a field of arbitrary characteristic, J. Reine Angew. Math. 758 (2020), 139–182. MR 4048444, DOI 10.1515/crelle-2017-0052
- André Weil, Variétés abéliennes et courbes algébriques, Publications de l’Institut de Mathématiques de l’Université de Strasbourg [Publications of the Mathematical Institute of the University of Strasbourg], vol. 8, Hermann & Cie, Paris, 1948 (French). Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1064. MR 29522
- Tetsuro Yamamoto, On the extreme values of the roots of matrices, J. Math. Soc. Japan 19 (1967), 173–178. MR 209304, DOI 10.2969/jmsj/01920173
- Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), no. 3, 285–300. MR 889979, DOI 10.1007/BF02766215
- Yuri G. Zarhin, On matrices of endomorphisms of abelian varieties, Math. Res. Rep. 1 (2020), 55–68. MR 4387451, DOI 10.32014/2020.2518-1726.7
References
- Nguyen-Bac Dang, Degrees of iterates of rational maps on normal projective varieties, Proc. Lond. Math. Soc. (3) 121 (2020), no. 5, 1268–1310. MR 4133708, DOI 10.1112/plms.12366
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520
- Tien-Cuong Dinh, Suites d’applications méromorphes multivaluées et courants laminaires, J. Geom. Anal. 15 (2005), no. 2, 207–227 (French, with English summary). MR 2152480, DOI 10.1007/BF02922193
- Tien-Cuong Dinh and Nessim Sibony, Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math. (2) 161 (2005), no. 3, 1637–1644 (French, with English summary). MR 2180409, DOI 10.4007/annals.2005.161.1637
- Tien-Cuong Dinh and Nessim Sibony, Upper bound for the topological entropy of a meromorphic correspondence, Israel J. Math. 163 (2008), 29–44. MR 2391122, DOI 10.1007/s11856-008-0002-9
- Tien-Cuong Dinh and Nessim Sibony, Equidistribution problems in complex dynamics of higher dimension, Internat. J. Math. 28 (2017), no. 7, 1750057, 31. MR 3667901, DOI 10.1142/S0129167X17500574
- Andreas-Stephan Elsenhans and Jörg Jahnel, On the characteristic polynomial of the Frobenius on étale cohomology, Duke Math. J. 164 (2015), no. 11, 2161–2184. MR 3385131, DOI 10.1215/00127094-3129381
- Hélène Esnault and Vasudevan Srinivas, Algebraic versus topological entropy for surfaces over finite fields, Osaka J. Math. 50 (2013), no. 3, 827–846. MR 3129006
- Mihai Fulger and Brian Lehmann, Positive cones of dual cycle classes, Algebr. Geom. 4 (2017), no. 1, 1–28. MR 3592463, DOI 10.14231/AG-2017-001
- Mikhaïl Gromov, On the entropy of holomorphic maps, Enseign. Math. (2) 49 (2003), no. 3-4, 217–235. MR 2026895
- Roger A. Horn and Charles R. Johnson, Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2013. MR 2978290
- Fei Hu and Tuyen Trung Truong, A dynamical approach to generalized Weil’s Riemann hypothesis and semisimplicity, Preprint, arXiv:2102.04405, 2021.
- Fei Hu, Cohomological and numerical dynamical degrees on abelian varieties, Algebra Number Theory 13 (2019), no. 8, 1941–1958. MR 4017540, DOI 10.2140/ant.2019.13.1941
- Fei Hu, A theorem of Tits type for automorphism groups of projective varieties in arbitrary characteristic, Math. Ann. 377 (2020), no. 3-4, 1573–1602. With an appendix by Tomohide Terasoma. MR 4126902, DOI 10.1007/s00208-019-01812-9
- S. L. Kleiman, Algebraic cycles and the Weil conjectures, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 359–386. MR 292838
- Hwa-Chung Lee, Eigenvalues and canonical forms of matrices with quaternion coefficients, Proc. Roy. Irish Acad. Sect. A 52 (1949), 253–260. MR 0036738
- James S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 103–150. MR 861974
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1970. MR 0282985
- Sheng Meng and De-Qi Zhang, Building blocks of polarized endomorphisms of normal projective varieties, Adv. Math. 325 (2018), 243–273. MR 3742591, DOI 10.1016/j.aim.2017.11.026
- Frans Oort, Endomorphism algebras of abelian varieties, Algebraic geometry and commutative algebra, Vol. II, Kinokuniya, Tokyo, 1988, pp. 469–502. MR 977774
- Frans Oort, Abelian varieties over finite fields, Higher-dimensional geometry over finite fields, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., vol. 16, IOS, Amsterdam, 2008, pp. 123–188. MR 2484079
- Peter O’Sullivan, Algebraic cycles on an abelian variety, J. Reine Angew. Math. 654 (2011), 1–81. MR 2795752, DOI 10.1515/CRELLE.2011.025
- Bjorn Poonen and Sergey Rybakov, Lattices in Tate modules, Proc. Natl. Acad. Sci. USA 118 (2021), no. 49, e2113201118, DOI 10.1073/pnas.2113201118. MR 4401250
- I. Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003. Corrected reprint of the 1975 original; With a foreword by M. J. Taylor. MR 1972204
- Jean-Pierre Serre, Analogues kählériens de certaines conjectures de Weil, Ann. of Math. (2) 71 (1960), 392–394 (French). MR 112163, DOI 10.2307/1970088
- K. V. Shuddhodan, Constraints on the cohomological correspondence associated to a self map, Compos. Math. 155 (2019), no. 6, 1047–1056. MR 3949925, DOI 10.1112/s0010437x19007188
- Junecue Suh, Symmetry and parity in Frobenius action on cohomology, Compos. Math. 148 (2012), no. 1, 295–303. MR 2881317, DOI 10.1112/S0010437X11007056
- Shenghao Sun and Weizhe Zheng, Parity and symmetry in intersection and ordinary cohomology, Algebra Number Theory 10 (2016), no. 2, 235–307. MR 3477743, DOI 10.2140/ant.2016.10.235
- John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144. MR 206004, DOI 10.1007/BF01404549
- Tuyen Trung Truong, Relations between dynamical degrees, Weil’s Riemann hypothesis and the standard conjectures, Preprint, arXiv:1611.01124, 2016.
- Tuyen Trung Truong, Relative dynamical degrees of correspondences over a field of arbitrary characteristic, J. Reine Angew. Math. 758 (2020), 139–182. MR 4048444, DOI 10.1515/crelle-2017-0052
- André Weil, Variétés abéliennes et courbes algébriques, Publ. Inst. Math. Univ. Strasbourg, vol. 8, Hermann & Cie, Paris, 1948 (French). MR 0029522
- Tetsuro Yamamoto, On the extreme values of the roots of matrices, J. Math. Soc. Japan 19 (1967), 173–178. MR 209304, DOI 10.2969/jmsj/01920173
- Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), no. 3, 285–300. MR 889979, DOI 10.1007/BF02766215
- Yuri G. Zarhin, On matrices of endomorphisms of abelian varieties, Math. Res. Rep. 1 (2020), 55–68. MR 4387451, DOI 10.32014/2020.2518-1726.7
Additional Information
Fei Hu
Affiliation:
Department of Mathematics, Nanjing University, Nanjing 210093, Peoples Republic of China; Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, 0316 Oslo, Norway; and Pacific Institute for the Mathematical Sciences, Vancouver, British Columbia V6T1Z4, Canada
MR Author ID:
1086386
ORCID:
0000-0002-3801-1499
Email:
hf@u.nus.edu
Received by editor(s):
August 6, 2021
Received by editor(s) in revised form:
February 6, 2022
Published electronically:
February 7, 2023
Additional Notes:
The author was partially supported by a UBC-PIMS Postdoctoral Fellowship and Young Research Talents grant #300814 from the Research Council of Norway
Dedicated:
Dedicated to Professor De-Qi Zhang on the occasion of his sixtieth birthday
Article copyright:
© Copyright 2023
University Press, Inc.