On boundedness of singularities and minimal log discrepancies of Kollár components
Author:
Ziquan Zhuang
Journal:
J. Algebraic Geom. 33 (2024), 521-565
DOI:
https://doi.org/10.1090/jag/822
Published electronically:
January 25, 2024
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Recent study in K-stability suggests that Kawamata log terminal (klt) singularities whose local volumes are bounded away from zero should be bounded up to special degeneration. We show that this is true in dimension three, or when the minimal log discrepancies of Kollár components are bounded from above. We conjecture that the minimal log discrepancies of Kollár components are always bounded from above, and verify it in dimension three when the local volumes are bounded away from zero. We also answer a question from Han, Liu, and Qi on the relation between log canonical thresholds and local volumes.
References
- Florin Ambro, The set of toric minimal log discrepancies, Cent. Eur. J. Math. 4 (2006), no. 3, 358–370. MR 2233855, DOI 10.2478/s11533-006-0013-x
- A. A. Borisov and L. A. Borisov, Singular toric Fano three-folds, Mat. Sb. 183 (1992), no. 2, 134–141 (Russian); English transl., Russian Acad. Sci. Sb. Math. 75 (1993), no. 1, 277–283. MR 1166957, DOI 10.1070/SM1993v075n01ABEH003385
- Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468. MR 2601039, DOI 10.1090/S0894-0347-09-00649-3
- S. Boucksom, T. de Fernex, C. Favre, and S. Urbinati, Valuation spaces and multiplier ideals on singular varieties, Recent advances in algebraic geometry, London Math. Soc. Lecture Note Ser., vol. 417, Cambridge Univ. Press, Cambridge, 2015, pp. 29–51. MR 3380442
- Caucher Birkar, Anti-pluricanonical systems on Fano varieties, Ann. of Math. (2) 190 (2019), no. 2, 345–463. MR 3997127, DOI 10.4007/annals.2019.190.2.1
- Caucher Birkar, Singularities of linear systems and boundedness of Fano varieties, Ann. of Math. (2) 193 (2021), no. 2, 347–405. MR 4224714, DOI 10.4007/annals.2021.193.2.1
- Harold Blum and Yuchen Liu, The normalized volume of a singularity is lower semicontinuous, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 4, 1225–1256. MR 4228279, DOI 10.4171/jems/1032
- Harold Blum, Existence of valuations with smallest normalized volume, Compos. Math. 154 (2018), no. 4, 820–849. MR 3778195, DOI 10.1112/S0010437X17008016
- Alexandr Borisov, Minimal discrepancies of toric singularities, Manuscripta Math. 92 (1997), no. 1, 33–45. MR 1427666, DOI 10.1007/BF02678179
- Steven Dale Cutkosky, Multiplicities associated to graded families of ideals, Algebra Number Theory 7 (2013), no. 9, 2059–2083. MR 3152008, DOI 10.2140/ant.2013.7.2059
- Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith, Uniform approximation of Abhyankar valuation ideals in smooth function fields, Amer. J. Math. 125 (2003), no. 2, 409–440. MR 1963690, DOI 10.1353/ajm.2003.0010
- Osamu Fujino, Effective base point free theorem for log canonical pairs—Kollár type theorem, Tohoku Math. J. (2) 61 (2009), no. 4, 475–481. MR 2598245, DOI 10.2748/tmj/1264084495
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037, DOI 10.1515/9781400882526
- Jingjun Han and Yujie Luo, On boundedness of divisors computing minimal log discrepancies for surfaces, J. Inst. Math. Jussieu 22 (2023), no. 6, 2907–2930. MR 4653762, DOI 10.1017/s1474748022000299
- Jingjun Han, Jihao Liu, and Yujie Luo, ACC for minimal log discrepancies of terminal threefolds, arXiv:2202.05287, 2022.
- Jingjun Han, Jihao Liu, and Joaquín Moraga, Bounded deformations of $(\epsilon ,\delta )$-log canonical singularities, J. Math. Sci. Univ. Tokyo 27 (2020), no. 1, 1–28. MR 4246623
- Jingjun Han, Yuchen Liu, and Lu Qi, ACC for local volumes and boundedness of singularities, J. Algebraic Geom. 32 (2023), 519–583.
- Jingjun Han, Jihao Liu, and V. V. Shokurov, ACC for minimal log discrepancies of exceptional singularities, arXiv:1903.04338, 2019.
- Christopher D. Hacon, James McKernan, and Chenyang Xu, ACC for log canonical thresholds, Ann. of Math. (2) 180 (2014), no. 2, 523–571. MR 3224718, DOI 10.4007/annals.2014.180.2.3
- Shihoko Ishii and Yuri Prokhorov, Hypersurface exceptional singularities, Internat. J. Math. 12 (2001), no. 6, 661–687. MR 1875648, DOI 10.1142/S0129167X0100099X
- Chen Jiang, Boundedness of $\Bbb Q$-Fano varieties with degrees and alpha-invariants bounded from below, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 5, 1235–1248 (English, with English and French summaries). MR 4174851, DOI 10.24033/asens.2445
- Mattias Jonsson and Mircea Mustaţă, Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 6, 2145–2209 (2013) (English, with English and French summaries). MR 3060755, DOI 10.5802/aif.2746
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- János Kollár, Seifert $G_m$-bundles, arXiv:0404386, 2004.
- János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950, DOI 10.1017/CBO9781139547895
- János Kollár, Effective base point freeness, Math. Ann. 296 (1993), no. 4, 595–605. MR 1233485, DOI 10.1007/BF01445123
- Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR 2095472, DOI 10.1007/978-3-642-18808-4
- Chi Li, Minimizing normalized volumes of valuations, Math. Z. 289 (2018), no. 1-2, 491–513. MR 3803800, DOI 10.1007/s00209-017-1963-3
- Yuchen Liu, The volume of singular Kähler-Einstein Fano varieties, Compos. Math. 154 (2018), no. 6, 1131–1158. MR 3797604, DOI 10.1112/S0010437X18007042
- Chi Li, Yuchen Liu, and Chenyang Xu, A guided tour to normalized volume, Geometric analysis—in honor of Gang Tian’s 60th birthday, Progr. Math., vol. 333, Birkhäuser/Springer, Cham, [2020] ©2020, pp. 167–219. MR 4181002, DOI 10.1007/978-3-030-34953-0_{1}0
- Robert Lazarsfeld and Mircea Mustaţă, Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 5, 783–835 (English, with English and French summaries). MR 2571958, DOI 10.24033/asens.2109
- Chi Li, Xiaowei Wang, and Chenyang Xu, Algebraicity of the metric tangent cones and equivariant K-stability, J. Amer. Math. Soc. 34 (2021), no. 4, 1175–1214. MR 4301561, DOI 10.1090/jams/974
- Chi Li and Chenyang Xu, Stability of valuations: higher rational rank, Peking Math. J. 1 (2018), no. 1, 1–79. MR 4059992, DOI 10.1007/s42543-018-0001-7
- Yuchen Liu and Chenyang Xu, K-stability of cubic threefolds, Duke Math. J. 168 (2019), no. 11, 2029–2073. MR 3992032, DOI 10.1215/00127094-2019-0006
- Chi Li and Chenyang Xu, Stability of valuations and Kollár components, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 8, 2573–2627. MR 4118616, DOI 10.4171/JEMS/972
- Jihao Liu and Lingyao Xie, Divisors computing minimal log discrepancies on lc surfaces, arXiv:2101.00138, 2021.
- Yuchen Liu, Chenyang Xu, and Ziquan Zhuang, Finite generation for valuations computing stability thresholds and applications to K-stability, Ann. of Math. (2) 196 (2022), no. 2, 507–566. MR 4445441, DOI 10.4007/annals.2022.196.2.2
- Yuchen Liu and Ziquan Zhuang, On the sharpness of Tian’s criterion for K-stability, Nagoya Math. J. 245 (2022), 41–73. MR 4413362, DOI 10.1017/nmj.2020.28
- Joaquín Moraga, On minimal log discrepancies and Kollár components, Proc. Edinb. Math. Soc. (2) 64 (2021), no. 4, 982–1001. MR 4349419, DOI 10.1017/S0013091521000729
- Shigefumi Mori, On $3$-dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43–66. MR 792770, DOI 10.1017/S0027763000021358
- Joaquín Moraga and Hendrik Süß, Bounding toric singularities with normalized volume, arXiv:2111.01738, 2021.
- Yu. G. Prokhorov, Blow-ups of canonical singularities, Algebra (Moscow, 1998) de Gruyter, Berlin, 2000, pp. 301–317. MR 1754677
- Miles Reid, Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345–414. MR 927963, DOI 10.1090/pspum/046.1/927963
- V. V. Shokurov, Letters of a bi-rationalist. V. Minimal log discrepancies and termination of log flips, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 328–351 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3(246) (2004), 315–336. MR 2101303
- Cristiano Spotti and Song Sun, Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds, Pure Appl. Math. Q. 13 (2017), no. 3, 477–515. MR 3882206, DOI 10.4310/pamq.2017.v13.n3.a5
- Chenyang Xu, Finiteness of algebraic fundamental groups, Compos. Math. 150 (2014), no. 3, 409–414. MR 3187625, DOI 10.1112/S0010437X13007562
- Chenyang Xu, A minimizing valuation is quasi-monomial, Ann. of Math. (2) 191 (2020), no. 3, 1003–1030. MR 4088355, DOI 10.4007/annals.2020.191.3.6
- Chenyang Xu and Ziquan Zhuang, Uniqueness of the minimizer of the normalized volume function, Camb. J. Math. 9 (2021), no. 1, 149–176. MR 4325260, DOI 10.4310/CJM.2021.v9.n1.a2
- Chenyang Xu and Ziquan Zhuang, Stable degenerations of singularities, arXiv:2205.10915, 2022.
- Ziquan Zhuang, On boundedness of singularities and minimal log discrepancies of Kollár components, II, arXiv:2302.03841, 2023.
References
- Florin Ambro, The set of toric minimal log discrepancies, Cent. Eur. J. Math. 4 (2006), no. 3, 358–370. MR 2233855, DOI 10.2478/s11533-006-0013-x
- A. A. Borisov and L. A. Borisov, Singular toric Fano three-folds, Mat. Sb. 183 (1992), no. 2, 134–141 (Russian); English transl., Russian Acad. Sci. Sb. Math. 75 (1993), no. 1, 277–283. MR 1166957, DOI 10.1070/SM1993v075n01ABEH003385
- Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468. MR 2601039, DOI 10.1090/S0894-0347-09-00649-3
- S. Boucksom, T. de Fernex, C. Favre, and S. Urbinati, Valuation spaces and multiplier ideals on singular varieties, Recent advances in algebraic geometry, London Math. Soc. Lecture Note Ser., vol. 417, Cambridge Univ. Press, Cambridge, 2015, pp. 29–51. MR 3380442
- Caucher Birkar, Anti-pluricanonical systems on Fano varieties, Ann. of Math. (2) 190 (2019), no. 2, 345–463. MR 3997127, DOI 10.4007/annals.2019.190.2.1
- Caucher Birkar, Singularities of linear systems and boundedness of Fano varieties, Ann. of Math. (2) 193 (2021), no. 2, 347–405. MR 4224714, DOI 10.4007/annals.2021.193.2.1
- Harold Blum and Yuchen Liu, The normalized volume of a singularity is lower semicontinuous, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 4, 1225–1256. MR 4228279, DOI 10.4171/jems/1032
- Harold Blum, Existence of valuations with smallest normalized volume, Compos. Math. 154 (2018), no. 4, 820–849. MR 3778195, DOI 10.1112/S0010437X17008016
- Alexandr Borisov, Minimal discrepancies of toric singularities, Manuscripta Math. 92 (1997), no. 1, 33–45. MR 1427666, DOI 10.1007/BF02678179
- Steven Dale Cutkosky, Multiplicities associated to graded families of ideals, Algebra Number Theory 7 (2013), no. 9, 2059–2083. MR 3152008, DOI 10.2140/ant.2013.7.2059
- Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith, Uniform approximation of Abhyankar valuation ideals in smooth function fields, Amer. J. Math. 125 (2003), no. 2, 409–440. MR 1963690
- Osamu Fujino, Effective base point free theorem for log canonical pairs—Kollár type theorem, Tohoku Math. J. (2) 61 (2009), no. 4, 475–481. MR 2598245, DOI 10.2748/tmj/1264084495
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037, DOI 10.1515/9781400882526
- Jingjun Han and Yujie Luo, On boundedness of divisors computing minimal log discrepancies for surfaces, J. Inst. Math. Jussieu 22 (2023), no. 6, 2907–2930. MR 4653762, DOI 10.1017/s1474748022000299
- Jingjun Han, Jihao Liu, and Yujie Luo, ACC for minimal log discrepancies of terminal threefolds, arXiv:2202.05287, 2022.
- Jingjun Han, Jihao Liu, and Joaquín Moraga, Bounded deformations of $(\epsilon ,\delta )$-log canonical singularities, J. Math. Sci. Univ. Tokyo 27 (2020), no. 1, 1–28. MR 4246623
- Jingjun Han, Yuchen Liu, and Lu Qi, ACC for local volumes and boundedness of singularities, J. Algebraic Geom. 32 (2023), 519–583.
- Jingjun Han, Jihao Liu, and V. V. Shokurov, ACC for minimal log discrepancies of exceptional singularities, arXiv:1903.04338, 2019.
- Christopher D. Hacon, James McKernan, and Chenyang Xu, ACC for log canonical thresholds, Ann. of Math. (2) 180 (2014), no. 2, 523–571. MR 3224718, DOI 10.4007/annals.2014.180.2.3
- Shihoko Ishii and Yuri Prokhorov, Hypersurface exceptional singularities, Internat. J. Math. 12 (2001), no. 6, 661–687. MR 1875648, DOI 10.1142/S0129167X0100099X
- Chen Jiang, Boundedness of $\mathbb {Q}$-Fano varieties with degrees and alpha-invariants bounded from below, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 5, 1235–1248 (English, with English and French summaries). MR 4174851, DOI 10.24033/asens.2445
- Mattias Jonsson and Mircea Mustaţă, Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 6, 2145–2209 (2013) (English, with English and French summaries). MR 3060755, DOI 10.5802/aif.2746
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- János Kollár, Seifert $G_m$-bundles, arXiv:0404386, 2004.
- János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950, DOI 10.1017/CBO9781139547895
- János Kollár, Effective base point freeness, Math. Ann. 296 (1993), no. 4, 595–605. MR 1233485, DOI 10.1007/BF01445123
- Robert Lazarsfeld, Positivity in algebraic geometry. II: Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. MR 2095472, DOI 10.1007/978-3-642-18808-4
- Chi Li, Minimizing normalized volumes of valuations, Math. Z. 289 (2018), no. 1-2, 491–513. MR 3803800, DOI 10.1007/s00209-017-1963-3
- Yuchen Liu, The volume of singular Kähler-Einstein Fano varieties, Compos. Math. 154 (2018), no. 6, 1131–1158. MR 3797604, DOI 10.1112/S0010437X18007042
- Chi Li, Yuchen Liu, and Chenyang Xu, A guided tour to normalized volume, Geometric analysis—in honor of Gang Tian’s 60th birthday, Progr. Math., vol. 333, Birkhäuser/Springer, Cham, 2020, pp. 167–219. MR 4181002, DOI 10.1007/978-3-030-34953-0_10
- Robert Lazarsfeld and Mircea Mustaţă, Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 5, 783–835 (English, with English and French summaries). MR 2571958, DOI 10.24033/asens.2109
- Chi Li, Xiaowei Wang, and Chenyang Xu, Algebraicity of the metric tangent cones and equivariant K-stability, J. Amer. Math. Soc. 34 (2021), no. 4, 1175–1214. MR 4301561, DOI 10.1090/jams/974
- Chi Li and Chenyang Xu, Stability of valuations: higher rational rank, Peking Math. J. 1 (2018), no. 1, 1–79. MR 4059992, DOI 10.1007/s42543-018-0001-7
- Yuchen Liu and Chenyang Xu, K-stability of cubic threefolds, Duke Math. J. 168 (2019), no. 11, 2029–2073. MR 3992032, DOI 10.1215/00127094-2019-0006
- Chi Li and Chenyang Xu, Stability of valuations and Kollár components, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 8, 2573–2627. MR 4118616, DOI 10.4171/JEMS/972
- Jihao Liu and Lingyao Xie, Divisors computing minimal log discrepancies on lc surfaces, arXiv:2101.00138, 2021.
- Yuchen Liu, Chenyang Xu, and Ziquan Zhuang, Finite generation for valuations computing stability thresholds and applications to K-stability, Ann. of Math. (2) 196 (2022), no. 2, 507–566. MR 4445441, DOI 10.4007/annals.2022.196.2.2
- Yuchen Liu and Ziquan Zhuang, On the sharpness of Tian’s criterion for K-stability, Nagoya Math. J. 245 (2022), 41–73. MR 4413362, DOI 10.1017/nmj.2020.28
- Joaquín Moraga, On minimal log discrepancies and Kollár components, Proc. Edinb. Math. Soc. (2) 64 (2021), no. 4, 982–1001. MR 4349419, DOI 10.1017/S0013091521000729
- Shigefumi Mori, On $3$-dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43–66. MR 792770, DOI 10.1017/S0027763000021358
- Joaquín Moraga and Hendrik Süß, Bounding toric singularities with normalized volume, arXiv:2111.01738, 2021.
- Yu. G. Prokhorov, Blow-ups of canonical singularities, Algebra (Moscow, 1998) de Gruyter, Berlin, 2000, pp. 301–317. MR 1754677
- Miles Reid, Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345–414. MR 927963, DOI 10.1090/pspum/046.1/927963
- V. V. Shokurov, Letters of a bi-rationalist. V. Minimal log discrepancies and termination of log flips, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 328–351 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3(246) (2004), 315–336. MR 2101303
- Cristiano Spotti and Song Sun, Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds, Pure Appl. Math. Q. 13 (2017), no. 3, 477–515. MR 3882206, DOI 10.4310/pamq.2017.v13.n3.a5
- Chenyang Xu, Finiteness of algebraic fundamental groups, Compos. Math. 150 (2014), no. 3, 409–414. MR 3187625, DOI 10.1112/S0010437X13007562
- Chenyang Xu, A minimizing valuation is quasi-monomial, Ann. of Math. (2) 191 (2020), no. 3, 1003–1030. MR 4088355, DOI 10.4007/annals.2020.191.3.6
- Chenyang Xu and Ziquan Zhuang, Uniqueness of the minimizer of the normalized volume function, Camb. J. Math. 9 (2021), no. 1, 149–176. MR 4325260, DOI 10.4310/CJM.2021.v9.n1.a2
- Chenyang Xu and Ziquan Zhuang, Stable degenerations of singularities, arXiv:2205.10915, 2022.
- Ziquan Zhuang, On boundedness of singularities and minimal log discrepancies of Kollár components, II, arXiv:2302.03841, 2023.
Additional Information
Ziquan Zhuang
Affiliation:
Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
MR Author ID:
1257439
ORCID:
0000-0002-5466-5206
Email:
zzhuang@jhu.edu
Received by editor(s):
April 12, 2022
Received by editor(s) in revised form:
April 7, 2023
Published electronically:
January 25, 2024
Additional Notes:
The author was partially supported by the NSF Grant DMS-2240926 and a Clay research fellowship.
Article copyright:
© Copyright 2024
University Press, Inc.