Expected local topology of random complex submanifolds
Author:
Damien Gayet
Journal:
J. Algebraic Geom. 33 (2024), 655-686
DOI:
https://doi.org/10.1090/jag/817
Published electronically:
May 3, 2023
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $n\geq 2$ and $r\in \{1, \cdots , n-1\}$ be integers, $M$ be a compact smooth Kähler manifold of complex dimension $n$, $E$ be a holomorphic vector bundle with complex rank $r$ and equipped with a Hermitian metric $h_E$, and $L$ be an ample holomorphic line bundle over $M$ equipped with a metric $h$ with positive curvature form. For any $d\in \mathbb N$ large enough, we equip the space of holomorphic sections $H^0(M,E\otimes L^d)$ with the natural Gaussian measure associated to $h_E$, $h$ and its curvature form. Let $U\subset M$ be an open subset with smooth boundary. We prove that the average of the $(n-r)$-th Betti number of the vanishing locus in $U$ of a random section $s$ of $H^0(M,E\otimes L^d)$ is asymptotic to ${n-1 \choose r-1} d^n\int _U c_1(L)^n$ for large $d$. On the other hand, the average of the other Betti numbers is $o(d^n)$. The first asymptotic recovers the classical deterministic global algebraic computation. Moreover, such a discrepancy in the order of growth of these averages is new and contrasts with all known other smooth Gaussian models, in particular the real algebraic one. We prove a similar result for the affine complex Bargmann-Fock model.
References
- Robert J. Adler and Jonathan E. Taylor, Random fields and geometry, Springer Monographs in Mathematics, Springer, New York, 2007. MR 2319516
- Michele Ancona, Exponential rarefaction of maximal real algebraic hypersurfaces, J. Eur. Math. Soc. (JEMS) (2020), https://ems.press/journals/jems/articles/8736481.
- Denis Auroux, Théorèmes de structure des variétés symplectiques compactes via des techniques presque complexes, PhD thesis, 1999.
- Vincent Beffara and Damien Gayet, Percolation of random nodal lines, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 131–176. MR 3735866, DOI 10.1007/s10240-017-0093-0
- D. Beliaev, S. Muirhead, and I. Wigman, Russo-Seymour-Welsh estimates for the Kostlan ensemble of random polynomials, Ann. Inst. Henri Poincaré Probab. Stat. 57 (2021), no. 4, 2189–2218 (English, with English and French summaries). MR 4328561, DOI 10.1214/20-aihp1142
- Daouda Niang Diatta and Antonio Lerario, Low-degree approximation of random polynomials, Found. Comput. Math. 22 (2022), no. 1, 77–97. MR 4376589, DOI 10.1007/s10208-021-09506-y
- S. K. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996), no. 4, 666–705. MR 1438190, DOI 10.4310/jdg/1214459407
- Michael R. Douglas, Bernard Shiffman, and Steve Zelditch, Critical points and supersymmetric vacua. I, Comm. Math. Phys. 252 (2004), no. 1-3, 325–358. MR 2104882, DOI 10.1007/s00220-004-1228-y
- Damien Gayet, Systoles and Lagrangians of random complex algebraic hypersurfaces, J. Eur. Math. Soc. (JEMS), (2019) https://ems.press/journals/jems/articles/4809882.
- Damien Gayet, Asymptotic topology of excursion and nodal sets of Gaussian random fields, J. Reine Angew. Math. 790 (2022), 149–195. MR 4472863, DOI 10.1515/crelle-2022-0027
- Damien Gayet and Jean-Yves Welschinger, What is the total Betti number of a random real hypersurface?, J. Reine Angew. Math. 689 (2014), 137–168. MR 3187930, DOI 10.1515/crelle-2012-0062
- Damien Gayet and Jean-Yves Welschinger, Expected topology of random real algebraic submanifolds, J. Inst. Math. Jussieu 14 (2015), no. 4, 673–702. MR 3394124, DOI 10.1017/S1474748014000115
- Damien Gayet and Jean-Yves Welschinger, Betti numbers of random real hypersurfaces and determinants of random symmetric matrices, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 4, 733–772. MR 3474455, DOI 10.4171/JEMS/601
- Damien Gayet and Jean-Yves Welschinger, Betti numbers of random nodal sets of elliptic pseudo-differential operators, Asian J. Math. 21 (2017), no. 5, 811–840.
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- J. Ben Hough, Manjunath Krishnapur, Yuval Peres, and Bálint Virág, Zeros of Gaussian analytic functions and determinantal point processes, University Lecture Series, vol. 51, American Mathematical Society, Providence, RI, 2009. MR 2552864, DOI 10.1090/ulect/051
- François Laudenbach, A Morse complex on manifolds with boundary, Geom. Dedicata 153 (2011), 47–57. MR 2819662, DOI 10.1007/s10711-010-9555-y
- Antonio Lerario and Michele Stecconi, Maximal and typical topology of real polynomial singularities, arXiv:1906.04444, 2019.
- Thomas Letendre, Expected volume and Euler characteristic of random submanifolds, J. Funct. Anal. 270 (2016), no. 8, 3047–3110. MR 3470435, DOI 10.1016/j.jfa.2016.01.007
- Thomas Letendre and Martin Puchol, Variance of the volume of random real algebraic submanifolds II, Indiana Univ. Math. J. 68 (2019), no. 6, 1649–1720. MR 4052739, DOI 10.1512/iumj.2019.68.7830
- Xiaonan Ma and George Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, vol. 254, Birkhäuser Verlag, Basel, 2007. MR 2339952, DOI 10.1007/978-3-7643-8115-8
- Xiaonan Ma and George Marinescu, Remark on the off-diagonal expansion of the Bergman kernel on compact Kähler manifolds, Commun. Math. Stat. 1 (2013), no. 1, 37–41. MR 3197871, DOI 10.1007/s40304-013-0004-8
- Shin-ichi Matsumura, Weak Lefschetz theorems and the topology of zero loci of ample vector bundles, Comm. Anal. Geom. 22 (2014), no. 4, 595–616. MR 3263932, DOI 10.4310/CAG.2014.v22.n4.a1
- J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275–280. MR 161339, DOI 10.1090/S0002-9939-1964-0161339-9
- Fedor Nazarov and Mikhail Sodin, On the number of nodal domains of random spherical harmonics, Amer. J. Math. 131 (2009), no. 5, 1337–1357. MR 2555843, DOI 10.1353/ajm.0.0070
- F. Nazarov and M. Sodin, Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions, J. Math. Phys. Anal. Geom. 12 (2016), no. 3, 205–278. MR 3522141, DOI 10.15407/mag12.03.205
- S. S. Podkorytov, On the Euler characteristic of a random algebraic hypersurface, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 252 (1998), no. Geom. i Topol. 3, 224–230, 252–253 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 104 (2001), no. 4, 1387–1393. MR 1756726, DOI 10.1023/A:1011306603637
- Bernard Shiffman and Steve Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys. 200 (1999), no. 3, 661–683. MR 1675133, DOI 10.1007/s002200050544
- Michele Stecconi, Kac-Rice formula for transverse intersections, Anal. Math. Phys. 12 (2022), no. 2, Paper No. 44, 64. MR 4386457, DOI 10.1007/s13324-022-00654-0
- Gang Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), no. 1, 99–130. MR 1064867
- Igor Wigman, On the expected Betti numbers of the nodal set of random fields, Anal. PDE 14 (2021), no. 6, 1797–1816. MR 4308665, DOI 10.2140/apde.2021.14.1797
- Steve Zelditch, Szegő kernels and a theorem of Tian, Internat. Math. Res. Notices 6 (1998), 317–331. MR 1616718, DOI 10.1155/S107379289800021X
References
- Robert J. Adler and Jonathan E. Taylor, Random fields and geometry, Springer Monographs in Mathematics, Springer, New York, 2007. MR 2319516
- Michele Ancona, Exponential rarefaction of maximal real algebraic hypersurfaces, J. Eur. Math. Soc. (JEMS) (2020), https://ems.press/journals/jems/articles/8736481.
- Denis Auroux, Théorèmes de structure des variétés symplectiques compactes via des techniques presque complexes, PhD thesis, 1999.
- Vincent Beffara and Damien Gayet, Percolation of random nodal lines, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 131–176. MR 3735866, DOI 10.1007/s10240-017-0093-0
- D. Beliaev, S. Muirhead, and I. Wigman, Russo–Seymour–Welsh estimates for the Kostlan ensemble of random polynomials, Ann. Inst. Henri Poincaré Probab. Stat. 57 (2021), no. 4, 2189–2218 (English, with English and French summaries). MR 4328561, DOI 10.1214/20-aihp1142
- Daouda Niang Diatta and Antonio Lerario, Low-degree approximation of random polynomials, Found. Comput. Math. 22 (2022), no. 1, 77–97. MR 4376589, DOI 10.1007/s10208-021-09506-y
- S. K. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996), no. 4, 666–705. MR 1438190
- Michael R. Douglas, Bernard Shiffman, and Steve Zelditch, Critical points and supersymmetric vacua. I, Comm. Math. Phys. 252 (2004), no. 1-3, 325–358. MR 2104882, DOI 10.1007/s00220-004-1228-y
- Damien Gayet, Systoles and Lagrangians of random complex algebraic hypersurfaces, J. Eur. Math. Soc. (JEMS), (2019) https://ems.press/journals/jems/articles/4809882.
- Damien Gayet, Asymptotic topology of excursion and nodal sets of Gaussian random fields, J. Reine Angew. Math. 790 (2022), 149–195. MR 4472863, DOI 10.1515/crelle-2022-0027
- Damien Gayet and Jean-Yves Welschinger, What is the total Betti number of a random real hypersurface?, J. Reine Angew. Math. 689 (2014), 137–168. MR 3187930, DOI 10.1515/crelle-2012-0062
- Damien Gayet and Jean-Yves Welschinger, Expected topology of random real algebraic submanifolds, J. Inst. Math. Jussieu 14 (2015), no. 4, 673–702. MR 3394124, DOI 10.1017/S1474748014000115
- Damien Gayet and Jean-Yves Welschinger, Betti numbers of random real hypersurfaces and determinants of random symmetric matrices, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 4, 733–772. MR 3474455, DOI 10.4171/JEMS/601
- Damien Gayet and Jean-Yves Welschinger, Betti numbers of random nodal sets of elliptic pseudo-differential operators, Asian J. Math. 21 (2017), no. 5, 811–840.
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- J. Ben Hough, Manjunath Krishnapur, Yuval Peres, and Bálint Virág, Zeros of Gaussian analytic functions and determinantal point processes, University Lecture Series, vol. 51, American Mathematical Society, Providence, RI, 2009. MR 2552864, DOI 10.1090/ulect/051
- François Laudenbach, A Morse complex on manifolds with boundary, Geom. Dedicata 153 (2011), 47–57. MR 2819662, DOI 10.1007/s10711-010-9555-y
- Antonio Lerario and Michele Stecconi, Maximal and typical topology of real polynomial singularities, arXiv:1906.04444, 2019.
- Thomas Letendre, Expected volume and Euler characteristic of random submanifolds, J. Funct. Anal. 270 (2016), no. 8, 3047–3110. MR 3470435, DOI 10.1016/j.jfa.2016.01.007
- Thomas Letendre and Martin Puchol, Variance of the volume of random real algebraic submanifolds II, Indiana Univ. Math. J. 68 (2019), no. 6, 1649–1720. MR 4052739, DOI 10.1512/iumj.2019.68.7830
- Xiaonan Ma and George Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, vol. 254, Birkhäuser Verlag, Basel, 2007. MR 2339952, DOI 10.1007/978-3-7643-8115-8
- Xiaonan Ma and George Marinescu, Remark on the off-diagonal expansion of the Bergman kernel on compact Kähler manifolds, Commun. Math. Stat. 1 (2013), no. 1, 37–41. MR 3197871, DOI 10.1007/s40304-013-0004-8
- Shin-ichi Matsumura, Weak Lefschetz theorems and the topology of zero loci of ample vector bundles, Comm. Anal. Geom. 22 (2014), no. 4, 595–616. MR 3263932, DOI 10.4310/CAG.2014.v22.n4.a1
- J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275–280. MR 161339, DOI 10.2307/2034050
- Fedor Nazarov and Mikhail Sodin, On the number of nodal domains of random spherical harmonics, Amer. J. Math. 131 (2009), no. 5, 1337–1357. MR 2555843, DOI 10.1353/ajm.0.0070
- F. Nazarov and M. Sodin, Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions, Zh. Mat. Fiz. Anal. Geom. 12 (2016), no. 3, 205–278. MR 3522141, DOI 10.15407/mag12.03.205
- S. S. Podkorytov, On the Euler characteristic of a random algebraic hypersurface, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 252 (1998), no. Geom. i Topol. 3, 224–230, 252–253 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 104 (2001), no. 4, 1387–1393. MR 1756726, DOI 10.1023/A:1011306603637
- Bernard Shiffman and Steve Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys. 200 (1999), no. 3, 661–683. MR 1675133, DOI 10.1007/s002200050544
- Michele Stecconi, Kac–Rice formula for transverse intersections, Anal. Math. Phys. 12 (2022), no. 2, Paper No. 44, 64. MR 4386457, DOI 10.1007/s13324-022-00654-0
- Gang Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), no. 1, 99–130. MR 1064867
- Igor Wigman, On the expected Betti numbers of the nodal set of random fields, Anal. PDE 14 (2021), no. 6, 1797–1816. MR 4308665, DOI 10.2140/apde.2021.14.1797
- Steve Zelditch, Szegő kernels and a theorem of Tian, Internat. Math. Res. Notices 6 (1998), 317–331. MR 1616718, DOI 10.1155/S107379289800021X
Additional Information
Damien Gayet
Affiliation:
Université Grenoble Alpes, CNRS, Institut Fourier, F-38000 Grenoble, France
MR Author ID:
662257
Email:
damien.gayet@univ-grenoble-alpes.fr
Received by editor(s):
February 18, 2022
Received by editor(s) in revised form:
July 21, 2022, and July 28, 2022
Published electronically:
May 3, 2023
Dedicated:
This paper is dedicated to the memory of Steve Zelditch
Article copyright:
© Copyright 2023
University Press, Inc.