Weyl symmetry for curve counting invariants via spherical twists
Authors:
Tim-Henrik Buelles and Miguel Moreira
Journal:
J. Algebraic Geom. 33 (2024), 687-756
DOI:
https://doi.org/10.1090/jag/829
Published electronically:
May 10, 2024
Full-text PDF
Abstract |
References |
Additional Information
Abstract:
We study the curve counting invariants of Calabi–Yau 3-folds via the Weyl reflection along a ruled divisor. We obtain a new rationality result and functional equation for the generating functions of Pandharipande–Thomas invariants. When the divisor arises as resolution of a curve of $A_1$-singularities, our results match the rationality of the associated Calabi–Yau orbifold.
The symmetry on generating functions descends from the action of an infinite dihedral group of derived auto-equivalences, which is generated by the derived dual and a spherical twist. Our techniques involve wall-crossing formulas and generalized Donaldson–Thomas invariants for surface-like objects.
References
- Daniele Arcara and Aaron Bertram, Bridgeland-stable moduli spaces for $K$-trivial surfaces, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 1, 1–38. With an appendix by Max Lieblich. MR 2998828, DOI 10.4171/JEMS/354
- Rina Anno and Timothy Logvinenko, Spherical DG-functors, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 9, 2577–2656. MR 3692883, DOI 10.4171/JEMS/724
- Dan Abramovich and Alexander Polishchuk, Sheaves of $t$-structures and valuative criteria for stable complexes, J. Reine Angew. Math. 590 (2006), 89–130. MR 2208130, DOI 10.1515/CRELLE.2006.005
- Sjoerd Viktor Beentjes, John Calabrese, and Jørgen Vold Rennemo, A proof of the Donaldson-Thomas crepant resolution conjecture, Invent. Math. 229 (2022), no. 2, 451–562. MR 4448990, DOI 10.1007/s00222-022-01109-w
- Kai Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307–1338. MR 2600874, DOI 10.4007/annals.2009.170.1307
- Jim Bryan, Charles Cadman, and Ben Young, The orbifold topological vertex, Adv. Math. 229 (2012), no. 1, 531–595. MR 2854183, DOI 10.1016/j.aim.2011.09.008
- Jim Bryan and Rahul Pandharipande, BPS states of curves in Calabi-Yau 3-folds, Geom. Topol. 5 (2001), 287–318. MR 1825668, DOI 10.2140/gt.2001.5.287
- Jim Bryan and Rahul Pandharipande, The local Gromov-Witten theory of curves, J. Amer. Math. Soc. 21 (2008), no. 1, 101–136. With an appendix by Bryan, C. Faber, A. Okounkov and Pandharipande. MR 2350052, DOI 10.1090/S0894-0347-06-00545-5
- Tom Bridgeland, Alastair King, and Miles Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535–554. MR 1824990, DOI 10.1090/S0894-0347-01-00368-X
- Arend Bayer and Emanuele Macrì, The space of stability conditions on the local projective plane, Duke Math. J. 160 (2011), no. 2, 263–322. MR 2852118, DOI 10.1215/00127094-1444249
- Kai Behrend and Pooya Ronagh, The inertia operator on the motivic Hall algebra, Compos. Math. 155 (2019), no. 3, 528–598. MR 3923361, DOI 10.1112/s0010437x18007881
- Tom Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), no. 3, 613–632. MR 1893007, DOI 10.1007/s002220100185
- Tom Bridgeland, Hall algebras and curve-counting invariants, J. Amer. Math. Soc. 24 (2011), no. 4, 969–998. MR 2813335, DOI 10.1090/S0894-0347-2011-00701-7
- Jim Bryan and David Steinberg, Curve counting invariants for crepant resolutions, Trans. Amer. Math. Soc. 368 (2016), no. 3, 1583–1619. MR 3449219, DOI 10.1090/tran/6377
- John Calabrese, Donaldson-Thomas invariants and flops, J. Reine Angew. Math. 716 (2016), 103–145. MR 3518373, DOI 10.1515/crelle-2014-0017
- John Calabrese, On the crepant resolution conjecture for Donaldson-Thomas invariants, J. Algebraic Geom. 25 (2016), no. 1, 1–18. MR 3419955, DOI 10.1090/jag/660
- Jiun-Cheng Chen and Hsian-Hua Tseng, A note on derived McKay correspondence, Math. Res. Lett. 15 (2008), no. 3, 435–445. MR 2407221, DOI 10.4310/MRL.2008.v15.n3.a4
- Tohru Eguchi and Hiroaki Kanno, Topological strings and Nekrasov’s formulas, J. High Energy Phys. 12 (2003), 006, 30. MR 2041169, DOI 10.1088/1126-6708/2003/12/006
- Min-xin Huang, Sheldon Katz, and Albrecht Klemm, Topological string on elliptic CY 3-folds and the ring of Jacobi forms, J. High Energy Phys. 10 (2015), 125, front matter+78. MR 3435514, DOI 10.1007/JHEP10(2015)125
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870, DOI 10.1007/978-3-663-11624-0
- R. Paul Horja, Derived category automorphisms from mirror symmetry, Duke Math. J. 127 (2005), no. 1, 1–34. MR 2126495, DOI 10.1215/S0012-7094-04-12711-3
- Dieter Happel, Idun Reiten, and Sverre O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88. MR 1327209, DOI 10.1090/memo/0575
- D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. MR 2244106, DOI 10.1093/acprof:oso/9780199296866.001.0001
- A. Iqbal, All Genus topological string amplitudes and 5-brane webs as Feynman diagrams, arXiv:hep–th/0207114, 2002.
- Dominic Joyce, Configurations in abelian categories. III. Stability conditions and identities, Adv. Math. 215 (2007), no. 1, 153–219. MR 2354988, DOI 10.1016/j.aim.2007.04.002
- Albrecht Klemm, Maximilian Kreuzer, Erwin Riegler, and Emanuel Scheidegger, Topological string amplitudes, complete intersection Calabi-Yau spaces and threshold corrections, J. High Energy Phys. 5 (2005), 023, 116. MR 2155395, DOI 10.1088/1126-6708/2005/05/023
- Sheldon Katz, Albrecht Klemm, and Cumrun Vafa, Geometric engineering of quantum field theories, Nuclear Phys. B 497 (1997), no. 1-2, 173–195. MR 1467889, DOI 10.1016/S0550-3213(97)00282-4
- Albrecht Klemm and Peter Mayr, Strong coupling singularities and enhanced non-abelian gauge symmetries in $N=2$ string theory, Nuclear Phys. B 469 (1996), no. 1-2, 37–50. MR 1394826, DOI 10.1016/0550-3213(96)00108-3
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- Sheldon Katz, David R. Morrison, and M. Ronen Plesser, Enhanced gauge symmetry in type II string theory, Nuclear Phys. B 477 (1996), no. 1, 105–140. MR 1413256, DOI 10.1016/0550-3213(96)00331-8
- A. Klemm, D. Maulik, R. Pandharipande, and E. Scheidegger, Noether-Lefschetz theory and the Yau-Zaslow conjecture, J. Amer. Math. Soc. 23 (2010), no. 4, 1013–1040. MR 2669707, DOI 10.1090/S0894-0347-2010-00672-8
- Max Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom. 15 (2006), no. 1, 175–206. MR 2177199, DOI 10.1090/S1056-3911-05-00418-2
- Chiu-Chu Melissa Liu, Kefeng Liu, and Jian Zhou, A formula of two-partition Hodge integrals, J. Amer. Math. Soc. 20 (2007), no. 1, 149–184. MR 2257399, DOI 10.1090/S0894-0347-06-00541-8
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144, DOI 10.1093/oso/9780198534891.001.0001
- D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), no. 5, 1263–1285. MR 2264664, DOI 10.1112/S0010437X06002302
- D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math. 142 (2006), no. 5, 1286–1304. MR 2264665, DOI 10.1112/S0010437X06002314
- D. Maulik, A. Oblomkov, A. Okounkov, and R. Pandharipande, Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent. Math. 186 (2011), no. 2, 435–479. MR 2845622, DOI 10.1007/s00222-011-0322-y
- Emanuele Macrì and Benjamin Schmidt, Lectures on Bridgeland stability, Moduli of curves, Lect. Notes Unione Mat. Ital., vol. 21, Springer, Cham, 2017, pp. 139–211. MR 3729077
- F. Nironi, Moduli spaces of semistable sheaves on projective Deligne-Mumford stacks, arXiv:0811.1949, 2008.
- A. Okounkov and R. Pandharipande, The local Donaldson-Thomas theory of curves, Geom. Topol. 14 (2010), no. 3, 1503–1567. MR 2679579, DOI 10.2140/gt.2010.14.1503
- Georg Oberdieck, Dulip Piyaratne, and Yukinobu Toda, Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditions, J. Algebraic Geom. 31 (2022), no. 1, 13–73. MR 4372406, DOI 10.1090/jag/788
- Georg Oberdieck and Junliang Shen, Curve counting on elliptic Calabi-Yau threefolds via derived categories, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 3, 967–1002. MR 4055994, DOI 10.4171/jems/938
- R. Pandharipande and A. Pixton, Gromov-Witten/Pairs correspondence for the quintic 3-fold, J. Amer. Math. Soc. 30 (2017), no. 2, 389–449. MR 3600040, DOI 10.1090/jams/858
- R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), no. 2, 407–447. MR 2545686, DOI 10.1007/s00222-009-0203-9
- Dulip Piyaratne and Yukinobu Toda, Moduli of Bridgeland semistable objects on 3-folds and Donaldson-Thomas invariants, J. Reine Angew. Math. 747 (2019), 175–219. MR 3905133, DOI 10.1515/crelle-2016-0006
- Paul Seidel and Richard Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), no. 1, 37–108. MR 1831820, DOI 10.1215/S0012-7094-01-10812-0
- The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu/tags, 2022.
- R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on $K3$ fibrations, J. Differential Geom. 54 (2000), no. 2, 367–438. MR 1818182, DOI 10.4310/jdg/1214341649
- Yukinobu Toda, Moduli stacks and invariants of semistable objects on $K3$ surfaces, Adv. Math. 217 (2008), no. 6, 2736–2781. MR 2397465, DOI 10.1016/j.aim.2007.11.010
- Yukinobu Toda, Curve counting theories via stable objects I. DT/PT correspondence, J. Amer. Math. Soc. 23 (2010), no. 4, 1119–1157. MR 2669709, DOI 10.1090/S0894-0347-10-00670-3
- Yukinobu Toda, Generating functions of stable pair invariants via wall-crossings in derived categories, New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008) Adv. Stud. Pure Math., vol. 59, Math. Soc. Japan, Tokyo, 2010, pp. 389–434. MR 2683216, DOI 10.2969/aspm/05910389
- Yukinobu Toda, Curve counting theories via stable objects II: DT/ncDT flop formula, J. Reine Angew. Math. 675 (2013), 1–51. MR 3021446, DOI 10.1515/CRELLE.2011.176
- Yukinobu Toda, Stable pair invariants on Calabi-Yau threefolds containing $\Bbb P^2$, Geom. Topol. 20 (2016), no. 1, 555–611. MR 3470722, DOI 10.2140/gt.2016.20.555
- Yukinobu Toda, Hall algebras in the derived category and higher-rank DT invariants, Algebr. Geom. 7 (2020), no. 3, 240–262. MR 4087861, DOI 10.14231/ag-2020-008
- Michel Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), no. 3, 423–455. MR 2057015, DOI 10.1215/S0012-7094-04-12231-6
- Fei Yang and Jian Zhou, Local Gromov-Witten invariants of canonical line bundles of toric surfaces, Sci. China Math. 53 (2010), no. 6, 1571–1582. MR 2658614, DOI 10.1007/s11425-010-3082-z
- J. Zhou, A Conjecture on Hodge integrals, arXiv:math/0310282, 2003.
- J. Zhou, Localizations on moduli spaces and free field realizations of Feynman rules, arXiv:math/0310283, 2003.
References
- Daniele Arcara and Aaron Bertram, Bridgeland-stable moduli spaces for $K$-trivial surfaces, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 1, 1–38. With an appendix by Max Lieblich. MR 2998828, DOI 10.4171/JEMS/354
- Rina Anno and Timothy Logvinenko, Spherical DG-functors, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 9, 2577–2656. MR 3692883, DOI 10.4171/JEMS/724
- Dan Abramovich and Alexander Polishchuk, Sheaves of $t$-structures and valuative criteria for stable complexes, J. Reine Angew. Math. 590 (2006), 89–130. MR 2208130, DOI 10.1515/CRELLE.2006.005
- Sjoerd Viktor Beentjes, John Calabrese, and Jørgen Vold Rennemo, A proof of the Donaldson-Thomas crepant resolution conjecture, Invent. Math. 229 (2022), no. 2, 451–562. MR 4448990, DOI 10.1007/s00222-022-01109-w
- Kai Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307–1338. MR 2600874, DOI 10.4007/annals.2009.170.1307
- Jim Bryan, Charles Cadman, and Ben Young, The orbifold topological vertex, Adv. Math. 229 (2012), no. 1, 531–595. MR 2854183, DOI 10.1016/j.aim.2011.09.008
- Jim Bryan and Rahul Pandharipande, BPS states of curves in Calabi-Yau 3-folds, Geom. Topol. 5 (2001), 287–318. MR 1825668, DOI 10.2140/gt.2001.5.287
- Jim Bryan and Rahul Pandharipande, The local Gromov-Witten theory of curves, J. Amer. Math. Soc. 21 (2008), no. 1, 101–136. With an appendix by Bryan, C. Faber, A. Okounkov and Pandharipande. MR 2350052, DOI 10.1090/S0894-0347-06-00545-5
- Tom Bridgeland, Alastair King, and Miles Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535–554. MR 1824990, DOI 10.1090/S0894-0347-01-00368-X
- Arend Bayer and Emanuele Macrì, The space of stability conditions on the local projective plane, Duke Math. J. 160 (2011), no. 2, 263–322. MR 2852118, DOI 10.1215/00127094-1444249
- Kai Behrend and Pooya Ronagh, The inertia operator on the motivic Hall algebra, Compos. Math. 155 (2019), no. 3, 528–598. MR 3923361, DOI 10.1112/s0010437x18007881
- Tom Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), no. 3, 613–632. MR 1893007, DOI 10.1007/s002220100185
- Tom Bridgeland, Hall algebras and curve-counting invariants, J. Amer. Math. Soc. 24 (2011), no. 4, 969–998. MR 2813335, DOI 10.1090/S0894-0347-2011-00701-7
- Jim Bryan and David Steinberg, Curve counting invariants for crepant resolutions, Trans. Amer. Math. Soc. 368 (2016), no. 3, 1583–1619. MR 3449219, DOI 10.1090/tran/6377
- John Calabrese, Donaldson-Thomas invariants and flops, J. Reine Angew. Math. 716 (2016), 103–145. MR 3518373, DOI 10.1515/crelle-2014-0017
- John Calabrese, On the crepant resolution conjecture for Donaldson-Thomas invariants, J. Algebraic Geom. 25 (2016), no. 1, 1–18. MR 3419955, DOI 10.1090/jag/660
- Jiun-Cheng Chen and Hsian-Hua Tseng, A note on derived McKay correspondence, Math. Res. Lett. 15 (2008), no. 3, 435–445. MR 2407221, DOI 10.4310/MRL.2008.v15.n3.a4
- Tohru Eguchi and Hiroaki Kanno, Topological strings and Nekrasov’s formulas, J. High Energy Phys. 12 (2003), 006, 30. MR 2041169, DOI 10.1088/1126-6708/2003/12/006
- Min-xin Huang, Sheldon Katz, and Albrecht Klemm, Topological string on elliptic CY 3-folds and the ring of Jacobi forms, J. High Energy Phys. 10 (2015), 125, front matter+78. MR 3435514, DOI 10.1007/JHEP10(2015)125
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870, DOI 10.1007/978-3-663-11624-0
- R. Paul Horja, Derived category automorphisms from mirror symmetry, Duke Math. J. 127 (2005), no. 1, 1–34. MR 2126495, DOI 10.1215/S0012-7094-04-12711-3
- Dieter Happel, Idun Reiten, and Sverre O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88. MR 1327209, DOI 10.1090/memo/0575
- D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. MR 2244106, DOI 10.1093/acprof:oso/9780199296866.001.0001
- A. Iqbal, All Genus topological string amplitudes and 5-brane webs as Feynman diagrams, arXiv:hep–th/0207114, 2002.
- Dominic Joyce, Configurations in abelian categories. III. Stability conditions and identities, Adv. Math. 215 (2007), no. 1, 153–219. MR 2354988, DOI 10.1016/j.aim.2007.04.002
- Albrecht Klemm, Maximilian Kreuzer, Erwin Riegler, and Emanuel Scheidegger, Topological string amplitudes, complete intersection Calabi-Yau spaces and threshold corrections, J. High Energy Phys. 5 (2005), 023, 116. MR 2155395, DOI 10.1088/1126-6708/2005/05/023
- Sheldon Katz, Albrecht Klemm, and Cumrun Vafa, Geometric engineering of quantum field theories, Nuclear Phys. B 497 (1997), no. 1-2, 173–195. MR 1467889, DOI 10.1016/S0550-3213(97)00282-4
- Albrecht Klemm and Peter Mayr, Strong coupling singularities and enhanced non-abelian gauge symmetries in $N=2$ string theory, Nuclear Phys. B 469 (1996), no. 1-2, 37–50. MR 1394826, DOI 10.1016/0550-3213(96)00108-3
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- Sheldon Katz, David R. Morrison, and M. Ronen Plesser, Enhanced gauge symmetry in type II string theory, Nuclear Phys. B 477 (1996), no. 1, 105–140. MR 1413256, DOI 10.1016/0550-3213(96)00331-8
- A. Klemm, D. Maulik, R. Pandharipande, and E. Scheidegger, Noether-Lefschetz theory and the Yau-Zaslow conjecture, J. Amer. Math. Soc. 23 (2010), no. 4, 1013–1040. MR 2669707, DOI 10.1090/S0894-0347-2010-00672-8
- Max Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom. 15 (2006), no. 1, 175–206. MR 2177199, DOI 10.1090/S1056-3911-05-00418-2
- Chiu-Chu Melissa Liu, Kefeng Liu, and Jian Zhou, A formula of two-partition Hodge integrals, J. Amer. Math. Soc. 20 (2007), no. 1, 149–184. MR 2257399, DOI 10.1090/S0894-0347-06-00541-8
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), no. 5, 1263–1285. MR 2264664, DOI 10.1112/S0010437X06002302
- D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math. 142 (2006), no. 5, 1286–1304. MR 2264665, DOI 10.1112/S0010437X06002314
- D. Maulik, A. Oblomkov, A. Okounkov, and R. Pandharipande, Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent. Math. 186 (2011), no. 2, 435–479. MR 2845622, DOI 10.1007/s00222-011-0322-y
- Emanuele Macrìand Benjamin Schmidt, Lectures on Bridgeland stability, Moduli of curves, Lect. Notes Unione Mat. Ital., vol. 21, Springer, Cham, 2017, pp. 139–211. MR 3729077
- F. Nironi, Moduli spaces of semistable sheaves on projective Deligne-Mumford stacks, arXiv:0811.1949, 2008.
- A. Okounkov and R. Pandharipande, The local Donaldson-Thomas theory of curves, Geom. Topol. 14 (2010), no. 3, 1503–1567. MR 2679579, DOI 10.2140/gt.2010.14.1503
- Georg Oberdieck, Dulip Piyaratne, and Yukinobu Toda, Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditions, J. Algebraic Geom. 31 (2022), no. 1, 13–73. MR 4372406, DOI 10.1090/jag/788
- Georg Oberdieck and Junliang Shen, Curve counting on elliptic Calabi-Yau threefolds via derived categories, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 3, 967–1002. MR 4055994, DOI 10.4171/jems/938
- R. Pandharipande and A. Pixton, Gromov-Witten/Pairs correspondence for the quintic 3-fold, J. Amer. Math. Soc. 30 (2017), no. 2, 389–449. MR 3600040, DOI 10.1090/jams/858
- R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), no. 2, 407–447. MR 2545686, DOI 10.1007/s00222-009-0203-9
- Dulip Piyaratne and Yukinobu Toda, Moduli of Bridgeland semistable objects on 3-folds and Donaldson-Thomas invariants, J. Reine Angew. Math. 747 (2019), 175–219. MR 3905133, DOI 10.1515/crelle-2016-0006
- Paul Seidel and Richard Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), no. 1, 37–108. MR 1831820, DOI 10.1215/S0012-7094-01-10812-0
- The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu/tags, 2022.
- R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on $K3$ fibrations, J. Differential Geom. 54 (2000), no. 2, 367–438. MR 1818182
- Yukinobu Toda, Moduli stacks and invariants of semistable objects on $K3$ surfaces, Adv. Math. 217 (2008), no. 6, 2736–2781. MR 2397465, DOI 10.1016/j.aim.2007.11.010
- Yukinobu Toda, Curve counting theories via stable objects I. DT/PT correspondence, J. Amer. Math. Soc. 23 (2010), no. 4, 1119–1157. MR 2669709, DOI 10.1090/S0894-0347-10-00670-3
- Yukinobu Toda, Generating functions of stable pair invariants via wall-crossings in derived categories, New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008) Adv. Stud. Pure Math., vol. 59, Math. Soc. Japan, Tokyo, 2010, pp. 389–434. MR 2683216, DOI 10.2969/aspm/05910389
- Yukinobu Toda, Curve counting theories via stable objects II: DT/ncDT flop formula, J. Reine Angew. Math. 675 (2013), 1–51. MR 3021446, DOI 10.1515/CRELLE.2011.176
- Yukinobu Toda, Stable pair invariants on Calabi-Yau threefolds containing $\mathbb {P}^2$, Geom. Topol. 20 (2016), no. 1, 555–611. MR 3470722, DOI 10.2140/gt.2016.20.555
- Yukinobu Toda, Hall algebras in the derived category and higher-rank DT invariants, Algebr. Geom. 7 (2020), no. 3, 240–262. MR 4087861, DOI 10.14231/ag-2020-008
- Michel Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), no. 3, 423–455. MR 2057015, DOI 10.1215/S0012-7094-04-12231-6
- Fei Yang and Jian Zhou, Local Gromov-Witten invariants of canonical line bundles of toric surfaces, Sci. China Math. 53 (2010), no. 6, 1571–1582. MR 2658614, DOI 10.1007/s11425-010-3082-z
- J. Zhou, A Conjecture on Hodge integrals, arXiv:math/0310282, 2003.
- J. Zhou, Localizations on moduli spaces and free field realizations of Feynman rules, arXiv:math/0310283, 2003.
Additional Information
Tim-Henrik Buelles
Affiliation:
The Division of Mathematics, Physics and Astronomy, California Institute of Technology, Pasadena, CA 91125
MR Author ID:
1422111
Email:
tbuelles@caltech.edu
Miguel Moreira
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
MR Author ID:
1513017
Email:
miguel@mit.edu
Received by editor(s):
May 19, 2022
Received by editor(s) in revised form:
October 3, 2023
Published electronically:
May 10, 2024
Additional Notes:
The authors were supported by ERC-2017-AdG-786580-MACI. The project received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation programme (grant agreement 786580).
Article copyright:
© Copyright 2024
University Press, Inc.