Twisted logarithmic complexes of positively weighted homogeneous divisors
Authors:
Daniel Bath and Morihiko Saito
Journal:
J. Algebraic Geom. 34 (2025), 447-487
DOI:
https://doi.org/10.1090/jag/833
Published electronically:
July 12, 2024
Full-text PDF
Abstract |
References |
Additional Information
Abstract: For a rank 1 local system on the complement of a reduced divisor on a complex manifold $X$, its cohomology is calculated by the twisted meromorphic de Rham complex. Assuming the divisor is everywhere positively weighted homogeneous, we study necessary or sufficient conditions for a quasi-isomorphism from its twisted logarithmic subcomplex, called the logarithmic comparison theorem (LCT), by using a stronger version in terms of the associated complex of $D_X$-modules. In case the connection is a pullback by a defining function $f$ of the divisor and the residue is $\alpha$, we prove among others that if LCT holds, the annihilator of $f^{\alpha -1}$ in $D_X$ is generated by first order differential operators and $\alpha -1-j$ is not a root of the Bernstein-Sato polynomial for any positive integer $j$. The converse holds assuming either of the two conditions in case the associated complex of $D_X$-modules is acyclic except for the top degree. In the case where the local system is constant, the divisor is defined by a homogeneous polynomial, and the associated projective hypersurface has only weighted homogeneous isolated singularities, we show that LCT is equivalent to that $-1$ is the unique integral root of the Bernstein-Sato polynomial. We also give a simple proof of LCT in the hyperplane arrangement case under appropriate assumptions on residues, which is an immediate corollary of higher cohomology vanishing associated with Castelnuovo-Mumford regularity. Here the zero-extension case is also treated.
References
- Daniel Barlet and Morihiko Saito, Brieskorn modules and Gauss-Manin systems for non-isolated hypersurface singularities, J. Lond. Math. Soc. (2) 76 (2007), no. 1, 211–224. MR 2351618, DOI 10.1112/jlms/jdm027
- D. Bath, Hyperplane arrangements satisfy (un)twisted logarithmic comparison theorems, applications to $D_X$-modules, arXiv:2202.01462v2, 2022.
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- J.-E. Björk, Analytic $D$-modules and applications, Springer, Dordrecht, 1993.
- Egbert Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103–161 (German, with English summary). MR 267607, DOI 10.1007/BF01155695
- E. Brieskorn, Sur les groupes de tresses, Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, Lecture Notes in Mathematics, vol. 317, Springer, Berlin, 1973, pp. 21–44.
- N. Budur, Polar order criterion for roots of $b$-functions (without multiplicity information), Preprint, 2015.
- Nero Budur and Morihiko Saito, Jumping coefficients and spectrum of a hyperplane arrangement, Math. Ann. 347 (2010), no. 3, 545–579. MR 2640043, DOI 10.1007/s00208-009-0449-y
- Francisco J. Calderón Moreno, David Mond, Luis Narváez Macarro, and Francisco J. Castro Jiménez, Logarithmic cohomology of the complement of a plane curve, Comment. Math. Helv. 77 (2002), no. 1, 24–38. MR 1898392, DOI 10.1007/s00014-002-8330-6
- Francisco Javier Calderón Moreno and Luis Narváez Macarro, Dualité et comparaison sur les complexes de de Rham logarithmiques par rapport aux diviseurs libres, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 47–75 (French, with English and French summaries). MR 2141288, DOI 10.5802/aif.2089
- F. J. Calderón Moreno and L. Narváez Macarro, On the logarithmic comparison theorem for integrable logarithmic connections, Proc. Lond. Math. Soc. (3) 98 (2009), no. 3, 585–606. MR 2500865, DOI 10.1112/plms/pdn043
- Francisco J. Castro-Jiménez, Luis Narváez-Macarro, and David Mond, Cohomology of the complement of a free divisor, Trans. Amer. Math. Soc. 348 (1996), no. 8, 3037–3049. MR 1363009, DOI 10.1090/S0002-9947-96-01690-X
- D. Cohen, G. Denham, M. Falk, and A. Varchenko, Critical points and resonance of hyperplane arrangements, Canad. J. Math. 63 (2011), no. 5, 1038–1057. MR 2866070, DOI 10.4153/CJM-2011-028-8
- W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, Singular 4.2.0—A computer algebra system for polynomial computations, available at http://www.singular.uni-kl.de (2020).
- Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin-New York, 1970 (French). MR 417174, DOI 10.1007/BFb0061194
- Harm Derksen and Jessica Sidman, Castelnuovo-Mumford regularity by approximation, Adv. Math. 188 (2004), no. 1, 104–123. MR 2084776, DOI 10.1016/j.aim.2003.10.001
- Alexandru Dimca and Dorin Popescu, Hilbert series and Lefschetz properties of dimension one almost complete intersections, Comm. Algebra 44 (2016), no. 10, 4467–4482. MR 3508312, DOI 10.1080/00927872.2015.1087535
- Alexandru Dimca and Morihiko Saito, Some consequences of perversity of vanishing cycles, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 6, 1769–1792 (2005) (English, with English and French summaries). MR 2134223, DOI 10.5802/aif.2065
- A. Dimca and M. Saito, Koszul complexes and spectra of projective hypersurfaces with isolated singularities, arXiv:1212.1081v4, 2014.
- Alexandru Dimca and Gabriel Sticlaru, Free divisors and rational cuspidal plane curves, Math. Res. Lett. 24 (2017), no. 4, 1023–1042. MR 3723802, DOI 10.4310/MRL.2017.v24.n4.a5
- Alexandru Dimca and Gabriel Sticlaru, Computing Milnor fiber monodromy for some projective hypersurfaces, A panorama of singularities, Contemp. Math., vol. 742, Amer. Math. Soc., [Providence], RI, [2020] ©2020, pp. 31–52. MR 4047790, DOI 10.1090/conm/742/14937
- David Eisenbud, The geometry of syzygies, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, New York, 2005. A second course in commutative algebra and algebraic geometry. MR 2103875
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Martin P. Holland and David Mond, Logarithmic differential forms and the cohomology of the complement of a divisor, Math. Scand. 83 (1998), no. 2, 235–254. MR 1673922, DOI 10.7146/math.scand.a-13853
- Seung-Jo Jung, In-Kyun Kim, Morihiko Saito, and Youngho Yoon, Hodge ideals and spectrum of isolated hypersurface singularities, Ann. Inst. Fourier (Grenoble) 72 (2022), no. 2, 465–510 (English, with English and French summaries). MR 4448602, DOI 10.5802/aif.3453
- Seung-Jo Jung, In-Kyun Kim, Morihiko Saito, and Youngho Yoon, Higher Du Bois singularities of hypersurfaces, Proc. Lond. Math. Soc. (3) 125 (2022), no. 3, 543–567. MR 4480883, DOI 10.1112/plms.12464
- Masaki Kashiwara, $B$-functions and holonomic systems. Rationality of roots of $B$-functions, Invent. Math. 38 (1976/77), no. 1, 33–53. MR 430304, DOI 10.1007/BF01390168
- Masaki Kashiwara, $D$-modules and microlocal calculus, Translations of Mathematical Monographs, vol. 217, American Mathematical Society, Providence, RI, 2003. Translated from the 2000 Japanese original by Mutsumi Saito; Iwanami Series in Modern Mathematics. MR 1943036, DOI 10.1090/mmono/217
- B. Malgrange, Le polynôme de Bernstein d’une singularité isolée, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974) Lecture Notes in Math., Vol. 459, Springer, Berlin-New York, 1974, pp. 98–119 (French). MR 419827
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1968. MR 239612
- L. Narváez Macarro, Linearity conditions on the Jacobian ideal and logarithmic-meromorphic comparison for free divisors, Singularities I, Contemp. Math., vol. 474, Amer. Math. Soc., Providence, RI, 2008, pp. 245–269. MR 2454351, DOI 10.1090/conm/474/09259
- Luis Narváez Macarro, A duality approach to the symmetry of Bernstein-Sato polynomials of free divisors, Adv. Math. 281 (2015), 1242–1273. MR 3366865, DOI 10.1016/j.aim.2015.06.012
- Toshinori Oaku, Localization, local cohomology, and the $b$-function of a $D$-module with respect to a polynomial, The 50th anniversary of Gröbner bases, Adv. Stud. Pure Math., vol. 77, Math. Soc. Japan, Tokyo, 2018, pp. 353–398. MR 3839714, DOI 10.2969/aspm/07710353
- Thomas Reichelt, Morihiko Saito, and Uli Walther, Dependence of Lyubeznik numbers of cones of projective schemes on projective embeddings, Selecta Math. (N.S.) 27 (2021), no. 1, Paper No. 6, 22. MR 4202748, DOI 10.1007/s00029-020-00612-3
- Kyoji Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 265–291. MR 586450
- Morihiko Saito, On the exponents and the geometric genus of an isolated hypersurface singularity, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 465–472. MR 713271, DOI 10.1090/pspum/040.2/713271
- Morihiko Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849–995 (1989) (French). MR 1000123, DOI 10.2977/prims/1195173930
- Morihiko Saito, Induced $\scr D$-modules and differential complexes, Bull. Soc. Math. France 117 (1989), no. 3, 361–387 (English, with French summary). MR 1020112, DOI 10.24033/bsmf.2128
- Morihiko Saito, On microlocal $b$-function, Bull. Soc. Math. France 122 (1994), no. 2, 163–184 (English, with English and French summaries). MR 1273899, DOI 10.24033/bsmf.2227
- Morihiko Saito, Multiplier ideals, $b$-function, and spectrum of a hypersurface singularity, Compos. Math. 143 (2007), no. 4, 1050–1068. MR 2339839, DOI 10.1112/S0010437X07002916
- M. Saito, Hilbert series of graded Milnor algebras and roots of Bernstein-Sato polynomials, arXiv:1509.06288v7, 2015.
- Morihiko Saito, Bernstein-Sato polynomials of hyperplane arrangements, Selecta Math. (N.S.) 22 (2016), no. 4, 2017–2057. MR 3573952, DOI 10.1007/s00029-016-0268-4
- M. Saito, Degeneration of pole order spectral sequences for hyperplane arrangements of 4 variables, arXiv:1902.03838v1, 2019.
- M. Saito, Bernstein-Sato polynomials for projective hypersurfaces with weighted homogeneous isolated singularities, arXiv:1609.04801v9, 2020.
- Morihiko Saito, Roots of Bernstein-Sato polynomials of certain homogeneous polynomials with two-dimensional singular loci, Pure Appl. Math. Q. 16 (2020), no. 4, 1219–1280. MR 4180246, DOI 10.4310/PAMQ.2020.v16.n4.a13
- M. Saito, Lowest non-zero vanishing cohomology of holomorphic functions, arXiv:2008.10529v4, 2020.
- Morihiko Saito, $D$-modules generated by rational powers of holomorphic functions, Publ. Res. Inst. Math. Sci. 57 (2021), no. 3-4, 867–891. MR 4322001, DOI 10.4171/prims/57-3-5
- M. Saito, Notes on regular holonomic $D$-modules for algebraic geometers, arXiv:2201.01507v1, 2022.
- M. Saito, Bernstein-Sato polynomials of semi-weighted-homogeneous polynomials of nearly Brieskorn-Pham type, arXiv:2210.01028v8, 2023.
- Henry K. Schenck, Elementary modifications and line configurations in $\Bbb P^2$, Comment. Math. Helv. 78 (2003), no. 3, 447–462. MR 1998388, DOI 10.1007/s00014-003-0762-0
- J. Scherk and J. H. M. Steenbrink, On the mixed Hodge structure on the cohomology of the Milnor fibre, Math. Ann. 271 (1985), no. 4, 641–665. MR 790119, DOI 10.1007/BF01456138
- Mathias Schulze, Logarithmic comparison theorem versus Gauss-Manin system for isolated singularities, Adv. Geom. 10 (2010), no. 4, 699–708. MR 2733961, DOI 10.1515/ADVGEOM.2010.023
- Joseph Steenbrink, Intersection form for quasi-homogeneous singularities, Compositio Math. 34 (1977), no. 2, 211–223. MR 453735
- J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff & Noordhoff, Alphen aan den Rijn, 1977, pp. 525–563. MR 485870
- Tristan Torrelli, Polynômes de Bernstein associés à une fonction sur une intersection complète à singularité isolée, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 1, 221–244 (French, with English and French summaries). MR 1881577, DOI 10.5802/aif.1883
- Tristan Torrelli, Logarithmic comparison theorem and $\scr D$-modules: an overview, Singularity theory, World Sci. Publ., Hackensack, NJ, 2007, pp. 995–1009. MR 2342946, DOI 10.1142/9789812707499_{0}040
- A. N. Varčenko, Asymptotic Hodge structure on vanishing cohomology, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 3, 540–591, 688 (Russian). MR 623350
- Uli Walther, Bernstein-Sato polynomial versus cohomology of the Milnor fiber for generic hyperplane arrangements, Compos. Math. 141 (2005), no. 1, 121–145. MR 2099772, DOI 10.1112/S0010437X04001149
- Uli Walther, The Jacobian module, the Milnor fiber, and the $D$-module generated by $f^s$, Invent. Math. 207 (2017), no. 3, 1239–1287. MR 3608290, DOI 10.1007/s00222-016-0684-2
- Jonathan Wiens and Sergey Yuzvinsky, De Rham cohomology of logarithmic forms on arrangements of hyperplanes, Trans. Amer. Math. Soc. 349 (1997), no. 4, 1653–1662. MR 1407505, DOI 10.1090/S0002-9947-97-01894-1
References
- Daniel Barlet and Morihiko Saito, Brieskorn modules and Gauss-Manin systems for non-isolated hypersurface singularities, J. Lond. Math. Soc. (2) 76 (2007), no. 1, 211–224. MR 2351618, DOI 10.1112/jlms/jdm027
- D. Bath, Hyperplane arrangements satisfy (un)twisted logarithmic comparison theorems, applications to $D_X$-modules, arXiv:2202.01462v2, 2022.
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- J.-E. Björk, Analytic $D$-modules and applications, Springer, Dordrecht, 1993.
- Egbert Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103–161 (German, with English summary). MR 267607, DOI 10.1007/BF01155695
- E. Brieskorn, Sur les groupes de tresses, Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, Lecture Notes in Mathematics, vol. 317, Springer, Berlin, 1973, pp. 21–44.
- N. Budur, Polar order criterion for roots of $b$-functions (without multiplicity information), Preprint, 2015.
- Nero Budur and Morihiko Saito, Jumping coefficients and spectrum of a hyperplane arrangement, Math. Ann. 347 (2010), no. 3, 545–579. MR 2640043, DOI 10.1007/s00208-009-0449-y
- Francisco J. Calderón Moreno, David Mond, Luis Narváez Macarro, and Francisco J. Castro Jiménez, Logarithmic cohomology of the complement of a plane curve, Comment. Math. Helv. 77 (2002), no. 1, 24–38. MR 1898392, DOI 10.1007/s00014-002-8330-6
- Francisco Javier Calderón Moreno and Luis Narváez Macarro, Dualité et comparaison sur les complexes de de Rham logarithmiques par rapport aux diviseurs libres, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 47–75 (French, with English and French summaries). MR 2141288
- F. J. Calderón Moreno and L. Narváez Macarro, On the logarithmic comparison theorem for integrable logarithmic connections, Proc. Lond. Math. Soc. (3) 98 (2009), no. 3, 585–606. MR 2500865, DOI 10.1112/plms/pdn043
- Francisco J. Castro-Jiménez, Luis Narváez-Macarro, and David Mond, Cohomology of the complement of a free divisor, Trans. Amer. Math. Soc. 348 (1996), no. 8, 3037–3049. MR 1363009, DOI 10.1090/S0002-9947-96-01690-X
- D. Cohen, G. Denham, M. Falk, and A. Varchenko, Critical points and resonance of hyperplane arrangements, Canad. J. Math. 63 (2011), no. 5, 1038–1057. MR 2866070, DOI 10.4153/CJM-2011-028-8
- W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, Singular 4.2.0—A computer algebra system for polynomial computations, available at http://www.singular.uni-kl.de (2020).
- Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin-New York, 1970 (French). MR 417174
- Harm Derksen and Jessica Sidman, Castelnuovo-Mumford regularity by approximation, Adv. Math. 188 (2004), no. 1, 104–123. MR 2084776, DOI 10.1016/j.aim.2003.10.001
- Alexandru Dimca and Dorin Popescu, Hilbert series and Lefschetz properties of dimension one almost complete intersections, Comm. Algebra 44 (2016), no. 10, 4467–4482. MR 3508312, DOI 10.1080/00927872.2015.1087535
- Alexandru Dimca and Morihiko Saito, Some consequences of perversity of vanishing cycles, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 6, 1769–1792 (2005) (English, with English and French summaries). MR 2134223
- A. Dimca and M. Saito, Koszul complexes and spectra of projective hypersurfaces with isolated singularities, arXiv:1212.1081v4, 2014.
- Alexandru Dimca and Gabriel Sticlaru, Free divisors and rational cuspidal plane curves, Math. Res. Lett. 24 (2017), no. 4, 1023–1042. MR 3723802, DOI 10.4310/MRL.2017.v24.n4.a5
- Alexandru Dimca and Gabriel Sticlaru, Computing Milnor fiber monodromy for some projective hypersurfaces, A panorama of singularities, Contemp. Math., vol. 742, Amer. Math. Soc., [Providence], RI, [2020] ©2020, pp. 31–52. MR 4047790, DOI 10.1090/conm/742/14937
- David Eisenbud, The geometry of syzygies, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, New York, 2005. A second course in commutative algebra and algebraic geometry. MR 2103875
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157
- Martin P. Holland and David Mond, Logarithmic differential forms and the cohomology of the complement of a divisor, Math. Scand. 83 (1998), no. 2, 235–254. MR 1673922, DOI 10.7146/math.scand.a-13853
- Seung-Jo Jung, In-Kyun Kim, Morihiko Saito, and Youngho Yoon, Hodge ideals and spectrum of isolated hypersurface singularities, Ann. Inst. Fourier (Grenoble) 72 (2022), no. 2, 465–510 (English, with English and French summaries). MR 4448602, DOI 10.5802/aif.3453
- Seung-Jo Jung, In-Kyun Kim, Morihiko Saito, and Youngho Yoon, Higher Du Bois singularities of hypersurfaces, Proc. Lond. Math. Soc. (3) 125 (2022), no. 3, 543–567. MR 4480883, DOI 10.1112/plms.12464
- Masaki Kashiwara, $B$-functions and holonomic systems. Rationality of roots of $B$-functions, Invent. Math. 38 (1976/77), no. 1, 33–53. MR 430304, DOI 10.1007/BF01390168
- Masaki Kashiwara, $D$-modules and microlocal calculus, Translations of Mathematical Monographs, vol. 217, American Mathematical Society, Providence, RI, 2003. Translated from the 2000 Japanese original by Mutsumi Saito; Iwanami Series in Modern Mathematics. MR 1943036, DOI 10.1090/mmono/217
- B. Malgrange, Le polynôme de Bernstein d’une singularité isolée, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974) Lecture Notes in Math., Vol. 459, Springer, Berlin-New York, 1974, pp. 98–119 (French). MR 419827
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1968. MR 239612
- L. Narváez Macarro, Linearity conditions on the Jacobian ideal and logarithmic-meromorphic comparison for free divisors, Singularities I, Contemp. Math., vol. 474, Amer. Math. Soc., Providence, RI, 2008, pp. 245–269. MR 2454351, DOI 10.1090/conm/474/09259
- Luis Narváez Macarro, A duality approach to the symmetry of Bernstein-Sato polynomials of free divisors, Adv. Math. 281 (2015), 1242–1273. MR 3366865, DOI 10.1016/j.aim.2015.06.012
- Toshinori Oaku, Localization, local cohomology, and the $b$-function of a $D$-module with respect to a polynomial, The 50th anniversary of Gröbner bases, Adv. Stud. Pure Math., vol. 77, Math. Soc. Japan, Tokyo, 2018, pp. 353–398. MR 3839714, DOI 10.2969/aspm/07710353
- Thomas Reichelt, Morihiko Saito, and Uli Walther, Dependence of Lyubeznik numbers of cones of projective schemes on projective embeddings, Selecta Math. (N.S.) 27 (2021), no. 1, Paper No. 6, 22. MR 4202748, DOI 10.1007/s00029-020-00612-3
- Kyoji Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 265–291. MR 586450
- Morihiko Saito, On the exponents and the geometric genus of an isolated hypersurface singularity, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 465–472. MR 713271, DOI 10.1090/pspum/040.2/713271
- Morihiko Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849–995 (French). MR 1000123, DOI 10.2977/prims/1195173930
- Morihiko Saito, Induced $\mathcal {D}$-modules and differential complexes, Bull. Soc. Math. France 117 (1989), no. 3, 361–387 (English, with French summary). MR 1020112
- Morihiko Saito, On microlocal $b$-function, Bull. Soc. Math. France 122 (1994), no. 2, 163–184 (English, with English and French summaries). MR 1273899
- Morihiko Saito, Multiplier ideals, $b$-function, and spectrum of a hypersurface singularity, Compos. Math. 143 (2007), no. 4, 1050–1068. MR 2339839, DOI 10.1112/S0010437X07002916
- M. Saito, Hilbert series of graded Milnor algebras and roots of Bernstein-Sato polynomials, arXiv:1509.06288v7, 2015.
- Morihiko Saito, Bernstein-Sato polynomials of hyperplane arrangements, Selecta Math. (N.S.) 22 (2016), no. 4, 2017–2057. MR 3573952, DOI 10.1007/s00029-016-0268-4
- M. Saito, Degeneration of pole order spectral sequences for hyperplane arrangements of 4 variables, arXiv:1902.03838v1, 2019.
- M. Saito, Bernstein-Sato polynomials for projective hypersurfaces with weighted homogeneous isolated singularities, arXiv:1609.04801v9, 2020.
- Morihiko Saito, Roots of Bernstein-Sato polynomials of certain homogeneous polynomials with two-dimensional singular loci, Pure Appl. Math. Q. 16 (2020), no. 4, 1219–1280. MR 4180246, DOI 10.4310/PAMQ.2020.v16.n4.a13
- M. Saito, Lowest non-zero vanishing cohomology of holomorphic functions, arXiv:2008.10529v4, 2020.
- Morihiko Saito, $D$-modules generated by rational powers of holomorphic functions, Publ. Res. Inst. Math. Sci. 57 (2021), no. 3-4, 867–891. MR 4322001, DOI 10.4171/prims/57-3-5
- M. Saito, Notes on regular holonomic $D$-modules for algebraic geometers, arXiv:2201.01507v1, 2022.
- M. Saito, Bernstein-Sato polynomials of semi-weighted-homogeneous polynomials of nearly Brieskorn-Pham type, arXiv:2210.01028v8, 2023.
- Henry K. Schenck, Elementary modifications and line configurations in $\mathbb {P}^2$, Comment. Math. Helv. 78 (2003), no. 3, 447–462. MR 1998388, DOI 10.1007/s00014-003-0762-0
- J. Scherk and J. H. M. Steenbrink, On the mixed Hodge structure on the cohomology of the Milnor fibre, Math. Ann. 271 (1985), no. 4, 641–665. MR 790119, DOI 10.1007/BF01456138
- Mathias Schulze, Logarithmic comparison theorem versus Gauss-Manin system for isolated singularities, Adv. Geom. 10 (2010), no. 4, 699–708. MR 2733961, DOI 10.1515/ADVGEOM.2010.023
- Joseph Steenbrink, Intersection form for quasi-homogeneous singularities, Compositio Math. 34 (1977), no. 2, 211–223. MR 453735
- J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff & Noordhoff, Alphen aan den Rijn, 1977, pp. 525–563. MR 485870
- Tristan Torrelli, Polynômes de Bernstein associés à une fonction sur une intersection complète à singularité isolée, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 1, 221–244 (French, with English and French summaries). MR 1881577
- Tristan Torrelli, Logarithmic comparison theorem and $\mathcal {D}$-modules: an overview, Singularity theory, World Sci. Publ., Hackensack, NJ, 2007, pp. 995–1009. MR 2342946, DOI 10.1142/9789812707499_0040
- A. N. Varčenko, Asymptotic Hodge structure on vanishing cohomology, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 3, 540–591, 688 (Russian). MR 623350
- Uli Walther, Bernstein-Sato polynomial versus cohomology of the Milnor fiber for generic hyperplane arrangements, Compos. Math. 141 (2005), no. 1, 121–145. MR 2099772, DOI 10.1112/S0010437X04001149
- Uli Walther, The Jacobian module, the Milnor fiber, and the $D$-module generated by $f^s$, Invent. Math. 207 (2017), no. 3, 1239–1287. MR 3608290, DOI 10.1007/s00222-016-0684-2
- Jonathan Wiens and Sergey Yuzvinsky, De Rham cohomology of logarithmic forms on arrangements of hyperplanes, Trans. Amer. Math. Soc. 349 (1997), no. 4, 1653–1662. MR 1407505, DOI 10.1090/S0002-9947-97-01894-1
Additional Information
Daniel Bath
Affiliation:
Department of Mathematics, KU Leuven, 3001 Leuven, Belgium
MR Author ID:
1392630
Email:
dan.bath@kuleuven.be
Morihiko Saito
Affiliation:
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
MR Author ID:
193920
Email:
msaito@kurims.kyoto-u.ac.jp
Received by editor(s):
July 20, 2023
Received by editor(s) in revised form:
February 13, 2024
Published electronically:
July 12, 2024
Additional Notes:
The first named author was supported by FWO grant #G097819N and FWO grant #12E9623N. The second named author was partially supported by JSPS Kakenhi 15K04816.
Article copyright:
© Copyright 2024
University Press, Inc.