The existence of Zariski dense orbits for endomorphisms of projective surfaces
HTML articles powered by AMS MathViewer
- by Junyi Xie; with an appendix in collaboration with Thomas Tucker
- J. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/jams/1004
- Published electronically: April 18, 2022
- HTML | PDF | Request permission
Abstract:
Let $f$ be a dominant endomorphism of a smooth projective surface $X$ over an algebraically closed field $\mathbf {k}$ of characteristic $0$. We prove that if there is no rational function $H \in \mathbf {k}(X)$ such that $H \circ f = H$, then there exists a point $x \in X(\mathbf {k})$ such that the forward orbit of $x$ under $f$ is Zariski dense in $X$. This result gives us a positive answer to the Zariski dense orbit conjecture for endomorphisms of smooth projective surfaces.
We also define a new topology on varieties over algebraically closed fields with finite transcendence degree over $\mathbb {Q}$, which we call “the adelic topology”. This topology is stronger than the Zariski topology, and an irreducible variety is still irreducible in this topology. Using the adelic topology, we propose an adelic version of the Zariski dense orbit conjecture that is stronger than the original one and quantifies how many such orbits there are. We also prove this adelic version for endomorphisms of smooth projective surfaces, for endomorphisms of abelian varieties, and for split polynomial maps. This yields new proofs of the original conjecture in the latter two cases.
In Appendix A, we study endomorphisms of $k$-affinoid spaces. We show that for certain endomorphisms $f$ on a $k$-affinoid space $X$, the attractor $Y$ of $f$ is a Zariski closed subset and that the dynamics of $f$ is semi-conjugate to its restriction to $Y$. A special case of this result is used in the proof of the main theorem.
In Appendix B, written in collaboration with Thomas Tucker, we prove the Zariski dense orbit conjecture for endomorphisms of $(\mathbb {P}^1)^N$.
References
- Ekaterina Amerik, Existence of non-preperiodic algebraic points for a rational self-map of infinite order, Math. Res. Lett. 18 (2011), no. 2, 251–256. MR 2784670, DOI 10.4310/MRL.2011.v18.n2.a5
- E. Amerik, F. Bogomolov, and M. Rovinsky, Remarks on endomorphisms and rational points, Compos. Math. 147 (2011), no. 6, 1819–1842. MR 2862064, DOI 10.1112/S0010437X11005537
- Ekaterina Amerik and Frédéric Campana, Fibrations méromorphes sur certaines variétés à fibré canonique trivial, Pure Appl. Math. Q. 4 (2008), no. 2, Special Issue: In honor of Fedor Bogomolov., 509–545 (French). MR 2400885, DOI 10.4310/PAMQ.2008.v4.n2.a9
- Jason P. Bell, A generalised Skolem-Mahler-Lech theorem for affine varieties, J. London Math. Soc. (2) 73 (2006), no. 2, 367–379. MR 2225492, DOI 10.1112/S002461070602268X
- Jason Bell, Dragos Ghioca, and Zinovy Reichstein, On a dynamical version of a theorem of Rosenlicht, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 17 (2017), no. 1, 187–204. MR 3676045
- Jason P. Bell, Dragos Ghioca, Zinovy Reichstein, and Matthew Satriano, On the Medvedev-Scanlon conjecture for minimal threefolds of nonnegative Kodaira dimension, New York J. Math. 23 (2017), 1185–1203. MR 3711275
- J. P. Bell, D. Ghioca, and T. J. Tucker, The dynamical Mordell-Lang problem for étale maps, Amer. J. Math. 132 (2010), no. 6, 1655–1675. MR 2766180
- Jason Pierre Bell, Dragos Ghioca, and Thomas John Tucker, Applications of $p$-adic analysis for bounding periods for subvarieties under étale maps, Int. Math. Res. Not. IMRN 11 (2015), 3576–3597. MR 3373060, DOI 10.1093/imrn/rnu046
- Jason P. Bell, Dragos Ghioca, and Thomas J. Tucker, The dynamical Mordell-Lang conjecture, Mathematical Surveys and Monographs, vol. 210, American Mathematical Society, Providence, RI, 2016. MR 3468757, DOI 10.1090/surv/210
- Robert Benedetto, Patrick Ingram, Rafe Jones, Michelle Manes, Joseph H. Silverman, and Thomas J. Tucker, Current trends and open problems in arithmetic dynamics, Bull. Amer. Math. Soc. (N.S.) 56 (2019), no. 4, 611–685. MR 4007163, DOI 10.1090/bull/1665
- Robert L. Benedetto, Dragos Ghioca, Pär Kurlberg, and Thomas J. Tucker, A case of the dynamical Mordell-Lang conjecture, Math. Ann. 352 (2012), no. 1, 1–26. With an appendix by Umberto Zannier. MR 2885573, DOI 10.1007/s00208-010-0621-4
- Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990. MR 1070709, DOI 10.1090/surv/033
- Vladimir G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Inst. Hautes Études Sci. Publ. Math. 78 (1993), 5–161 (1994). MR 1259429
- Fedor Bogomolov and Yuri Tschinkel, Rational curves and points on $K3$ surfaces, Amer. J. Math. 127 (2005), no. 4, 825–835. MR 2154371
- Siegfried Bosch, Lectures on formal and rigid geometry, Lecture Notes in Mathematics, vol. 2105, Springer, Cham, 2014. MR 3309387, DOI 10.1007/978-3-319-04417-0
- S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. MR 746961, DOI 10.1007/978-3-642-52229-1
- Jean-Yves Briend and Julien Duval, Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de $\mathbf C\textrm {P}^k$, Acta Math. 182 (1999), no. 2, 143–157 (French). MR 1710180, DOI 10.1007/BF02392572
- J. Buhler and Z. Reichstein, On the essential dimension of a finite group, Compositio Math. 106 (1997), no. 2, 159–179. MR 1457337, DOI 10.1023/A:1000144403695
- Serge Cantat, Invariant hypersurfaces in holomorphic dynamics, Math. Res. Lett. 17 (2010), no. 5, 833–841. MR 2727612, DOI 10.4310/MRL.2010.v17.n5.a3
- Serge Cantat and Yves de Cornulier, Commensurating actions of birational groups and groups of pseudo-automorphisms, J. Éc. polytech. Math. 6 (2019), 767–809 (English, with English and French summaries). MR 4014636, DOI 10.5802/jep.106
- Serge Cantat and Junyi Xie, Algebraic actions of discrete groups: the $p$-adic method, Acta Math. 220 (2018), no. 2, 239–295. MR 3849285, DOI 10.4310/ACTA.2018.v220.n2.a2
- Yves Cornulier, Regularization of birational actions of FW groups, Confluentes Math. 12 (2020), no. 2, 3–10. MR 4236699
- Tien-Cuong Dinh and Viêt-Anh Nguyên, Comparison of dynamical degrees for semi-conjugate meromorphic maps, Comment. Math. Helv. 86 (2011), no. 4, 817–840. MR 2851870, DOI 10.4171/CMH/241
- Tien-Cuong Dinh, Viêt-Anh Nguyên, and Tuyen Trung Truong, Equidistribution for meromorphic maps with dominant topological degree, Indiana Univ. Math. J. 64 (2015), no. 6, 1805–1828. MR 3436236, DOI 10.1512/iumj.2015.64.5674
- Najmuddin Fakhruddin, Questions on self maps of algebraic varieties, J. Ramanujan Math. Soc. 18 (2003), no. 2, 109–122. MR 1995861
- Najmuddin Fakhruddin, The algebraic dynamics of generic endomorphisms of $\Bbb {P}^n$, Algebra Number Theory 8 (2014), no. 3, 587–608. MR 3218803, DOI 10.2140/ant.2014.8.587
- Yoshio Fujimoto and Noboru Nakayama, Endomorphisms of smooth projective 3-folds with nonnegative Kodaira dimension. II, J. Math. Kyoto Univ. 47 (2007), no. 1, 79–114. MR 2359102, DOI 10.1215/kjm/1250281069
- Dragos Ghioca and Fei Hu, Density of orbits of endomorphisms of commutative linear algebraic groups, New York J. Math. 24 (2018), 375–388. MR 3829742
- Dragos Ghioca, Khoa D. Nguyen, and Hexi Ye, The dynamical Manin-Mumford conjecture and the dynamical Bogomolov conjecture for endomorphisms of $(\Bbb P^1)^n$, Compos. Math. 154 (2018), no. 7, 1441–1472. MR 3826461, DOI 10.1112/s0010437x18007157
- Dragos Ghioca and Matthew Satriano, Density of orbits of dominant regular self-maps of semiabelian varieties, Trans. Amer. Math. Soc. 371 (2019), no. 9, 6341–6358. MR 3937327, DOI 10.1090/tran/7475
- Dragos Ghioca and Thomas Scanlon, Density of orbits of endomorphisms of abelian varieties, Trans. Amer. Math. Soc. 369 (2017), no. 1, 447–466. MR 3557780, DOI 10.1090/tran6648
- D. Ghioca and T. J. Tucker, Periodic points, linearizing maps, and the dynamical Mordell-Lang problem, J. Number Theory 129 (2009), no. 6, 1392–1403. MR 2521481, DOI 10.1016/j.jnt.2008.09.014
- Dragos Ghioca and Junyi Xie, Algebraic dynamics of skew-linear self-maps, Proc. Amer. Math. Soc. 146 (2018), no. 10, 4369–4387. MR 3834665, DOI 10.1090/proc/14104
- Dragos Ghioca and Junyi Xie, The dynamical Mordell-Lang conjecture for skew-linear self-maps. Appendix by Michael Wibmer, Int. Math. Res. Not. IMRN 21 (2020), 7433–7453. MR 4176829, DOI 10.1093/imrn/rny211
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- Vincent Guedj, Ergodic properties of rational mappings with large topological degree, Ann. of Math. (2) 161 (2005), no. 3, 1589–1607. MR 2179389, DOI 10.4007/annals.2005.161.1589
- M. Herman and J.-C. Yoccoz, Generalizations of some theorems of small divisors to non-Archimedean fields, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 408–447. MR 730280, DOI 10.1007/BFb0061427
- Ehud Hrushovski, The elementary theory of the Frobenius automorphisms, arXiv:math/0406514v1, 2004.
- Holly Krieger and Paul Reschke, Cohomological conditions on endomorphisms of projective varieties, Bull. Soc. Math. France 145 (2017), no. 3, 449–468 (English, with English and French summaries). MR 3766117, DOI 10.24033/bsmf.2744
- Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723, DOI 10.1007/978-1-4612-0853-2
- Christer Lech, A note on recurring series, Ark. Mat. 2 (1953), 417–421. MR 56634, DOI 10.1007/BF02590997
- Anne Lonjou and Christian Urech, Actions of Cremona groups on $\textrm {CAT}(0)$ cube complexes, Duke Math. J. 170 (2021), no. 17, 3703–3743. MR 4340723, DOI 10.1215/00127094-2021-0061
- Oliver Lorscheid and Cecília Salgado, A remark on topologies for rational point sets, J. Number Theory 159 (2016), 193–201. MR 3412719, DOI 10.1016/j.jnt.2015.07.015
- Yohsuke Matsuzawa, Kaoru Sano, and Takahiro Shibata, Arithmetic degrees and dynamical degrees of endomorphisms on surfaces, Algebra Number Theory 12 (2018), no. 7, 1635–1657. MR 3871505, DOI 10.2140/ant.2018.12.1635
- Alice Medvedev and Thomas Scanlon, Polynomial dynamics, arXiv:0901.2352v1, 2009.
- Alice Medvedev and Thomas Scanlon, Invariant varieties for polynomial dynamical systems, Ann. of Math. (2) 179 (2014), no. 1, 81–177. MR 3126567, DOI 10.4007/annals.2014.179.1.2
- Sheng Meng, Building blocks of amplified endomorphisms of normal projective varieties, Math. Z. 294 (2020), no. 3-4, 1727–1747. MR 4074056, DOI 10.1007/s00209-019-02316-7
- John Milnor, Dynamics in one complex variable, Friedr. Vieweg & Sohn, Braunschweig, 1999. Introductory lectures. MR 1721240
- Noboru Nakayama, Ruled surfaces with non-trivial surjective endomorphisms, Kyushu J. Math. 56 (2002), no. 2, 433–446. MR 1934136, DOI 10.2206/kyushujm.56.433
- Bjorn Poonen, $p$-adic interpolation of iterates, Bull. Lond. Math. Soc. 46 (2014), no. 3, 525–527. MR 3210707, DOI 10.1112/blms/bdu010
- Bjorn Poonen, Rational points on varieties, Graduate Studies in Mathematics, vol. 186, American Mathematical Society, Providence, RI, 2017. MR 3729254, DOI 10.1090/gsm/186
- D. Ridout, The $p$-adic generalization of the Thue-Siegel-Roth theorem, Mathematika 5 (1958), 40–48. MR 97382, DOI 10.1112/S0025579300001339
- Maxwell Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401–443. MR 82183, DOI 10.2307/2372523
- Jean-Pierre Serre, Topics in Galois theory, 2nd ed., Research Notes in Mathematics, vol. 1, A K Peters, Ltd., Wellesley, MA, 2008. With notes by Henri Darmon. MR 2363329
- André Weil, Adèles et groupes algébriques, Séminaire Bourbaki, Vol. 5, Soc. Math. France, Paris, 1995, pp. Exp. No. 186, 249–257 (French). MR 1603471
- Junyi Xie, On the non-expansive endomorphisms of the Berkovich spaces, In preparation.
- Junyi Xie, Dynamical Mordell-Lang conjecture for birational polynomial morphisms on $\Bbb A^2$, Math. Ann. 360 (2014), no. 1-2, 457–480. MR 3263169, DOI 10.1007/s00208-014-1039-1
- Junyi Xie, Periodic points of birational transformations on projective surfaces, Duke Math. J. 164 (2015), no. 5, 903–932. MR 3332894, DOI 10.1215/00127094-2877402
- Junyi Xie, The existence of Zariski dense orbits for polynomial endomorphisms of the affine plane, Compos. Math. 153 (2017), no. 8, 1658–1672. MR 3705271, DOI 10.1112/S0010437X17007187
- Kun Rui Yu, Linear forms in $p$-adic logarithms. II, Compositio Math. 74 (1990), no. 1, 15–113. MR 1055245
- Xinyi Yuan and Shou-Wu Zhang, The arithmetic Hodge index theorem for adelic line bundles II, 2013.
- Shou-Wu Zhang, Distributions in algebraic dynamics, Surveys in differential geometry. Vol. X, Surv. Differ. Geom., vol. 10, Int. Press, Somerville, MA, 2006, pp. 381–430. MR 2408228, DOI 10.4310/SDG.2005.v10.n1.a9
Bibliographic Information
- Junyi Xie
- Affiliation: Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China and Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
- MR Author ID: 1079811
- ORCID: 0000-0001-7386-8810
- Email: xiejunyi@bicmr.pku.edu.cn
- Thomas Tucker
- MR Author ID: 310767
- ORCID: 0000-0002-8582-2198
- Received by editor(s): November 29, 2019
- Received by editor(s) in revised form: April 26, 2020, April 3, 2021, October 14, 2021, and January 8, 2022
- Published electronically: April 18, 2022
- Additional Notes: The author was partially supported by project “Fatou” ANR-17-CE40-0002-01 and PEPS CNRS
- © Copyright 2022 American Mathematical Society
- Journal: J. Amer. Math. Soc.
- MSC (2020): Primary 37P55; Secondary 37P20
- DOI: https://doi.org/10.1090/jams/1004