Soliton resolution for energy-critical wave maps in the equivariant case
HTML articles powered by AMS MathViewer
- by Jacek Jendrej and Andrew Lawrie;
- J. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/jams/1012
- Published electronically: December 3, 2024
- HTML | PDF | Request permission
Abstract:
We consider the equivariant wave maps equation $\mathbb {R}^{1+2} \to \mathbb {S}^2$, in all equivariance classes $k \in \mathbb {N}$. We prove that every finite energy solution resolves, continuously in time, into a superposition of asymptotically decoupling harmonic maps and free radiation.References
- Hajer Bahouri and Patrick Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math. 121 (1999), no. 1, 131–175. MR 1705001, DOI 10.1353/ajm.1999.0001
- E. B. Bogomol’nyi, The stability of classical solutions, Soviet J. Nuclear Phys. 24 (1976), no. 4, 449–454.
- H. Brezis and J.-M. Coron, Convergence of solutions of $H$-systems or how to blow bubbles, Arch. Rational Mech. Anal. 89 (1985), no. 1, 21–56. MR 784102, DOI 10.1007/BF00281744
- Thierry Cazenave, Jalal Shatah, and A. Shadi Tahvildar-Zadeh, Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang-Mills fields, Ann. Inst. H. Poincaré Phys. Théor. 68 (1998), no. 3, 315–349 (English, with English and French summaries). MR 1622539
- Elisabetta Chiodaroli, Joachim Krieger, and Jonas Lührmann, Concentration compactness for critical radial wave maps, Ann. PDE 4 (2018), no. 1, Paper No. 8, 148. MR 3749762, DOI 10.1007/s40818-018-0045-0
- Shui Nee Chow and Jack K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wissenschaften, vol. 251, Springer-Verlag, New York-Berlin, 1982. MR 660633, DOI 10.1007/978-1-4613-8159-4
- Demetrios Christodoulou and A. Shadi Tahvildar-Zadeh, On the asymptotic behavior of spherically symmetric wave maps, Duke Math. J. 71 (1993), no. 1, 31–69. MR 1230285, DOI 10.1215/S0012-7094-93-07103-7
- Demetrios Christodoulou and A. Shadi Tahvildar-Zadeh, On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math. 46 (1993), no. 7, 1041–1091. MR 1223662, DOI 10.1002/cpa.3160460705
- Raphaël Côte, Instability of nonconstant harmonic maps for the $(1+2)$-dimensional equivariant wave map system, Int. Math. Res. Not. 57 (2005), 3525–3549. MR 2199855, DOI 10.1155/IMRN.2005.3525
- R. Côte, On the soliton resolution for equivariant wave maps to the sphere, Comm. Pure Appl. Math. 68 (2015), no. 11, 1946–2004. MR 3403756, DOI 10.1002/cpa.21545
- R. Côte, C. E. Kenig, A. Lawrie, and W. Schlag, Characterization of large energy solutions of the equivariant wave map problem: I, Amer. J. Math. 137 (2015), no. 1, 139–207. MR 3318089, DOI 10.1353/ajm.2015.0002
- R. Côte, C. E. Kenig, A. Lawrie, and W. Schlag, Characterization of large energy solutions of the equivariant wave map problem: II, Amer. J. Math. 137 (2015), no. 1, 209–250. MR 3318090, DOI 10.1353/ajm.2015.0003
- R. Côte, C. E. Kenig, A. Lawrie, and W. Schlag, Profiles for the radial focusing $4d$ energy-critical wave equation, Comm. Math. Phys. 357 (2018), no. 3, 943–1008. MR 3769743, DOI 10.1007/s00220-017-3043-2
- Raphaël Côte, Carlos E. Kenig, and Frank Merle, Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system, Comm. Math. Phys. 284 (2008), no. 1, 203–225. MR 2443303, DOI 10.1007/s00220-008-0604-4
- Raphaël Côte, Carlos E. Kenig, and Wilhelm Schlag, Energy partition for the linear radial wave equation, Math. Ann. 358 (2014), no. 3-4, 573–607. MR 3175135, DOI 10.1007/s00208-013-0970-x
- Thomas Duyckaerts, Hao Jia, Carlos Kenig, and Frank Merle, Soliton resolution along a sequence of times for the focusing energy critical wave equation, Geom. Funct. Anal. 27 (2017), no. 4, 798–862. MR 3678502, DOI 10.1007/s00039-017-0418-7
- Thomas Duyckaerts, Hao Jia, Carlos Kenig, and Frank Merle, Universality of blow up profile for small blow up solutions to the energy critical wave map equation, Int. Math. Res. Not. IMRN 22 (2018), 6961–7025. MR 3878592, DOI 10.1093/imrn/rnx073
- Thomas Duyckaerts, Carlos Kenig, Yvan Martel, and Frank Merle, Soliton resolution for critical co-rotational wave maps and radial cubic wave equation, Comm. Math. Phys. 391 (2022), no. 2, 779–871. MR 4397184, DOI 10.1007/s00220-022-04330-z
- T. Duyckaerts, C. Kenig, and F. Merle, Erratum: Profiles of bounded radial solutions of the focusing, energy-critical wave equation. arXiv e-prints, 01 2015.
- Thomas Duyckaerts, Carlos Kenig, and Frank Merle, Scattering profile for global solutions of the energy-critical wave equation, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 7, 2117–2162. MR 3959860, DOI 10.4171/JEMS/882
- Thomas Duyckaerts, Carlos Kenig, and Frank Merle, Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 3, 533–599. MR 2781926, DOI 10.4171/JEMS/261
- Thomas Duyckaerts, Carlos Kenig, and Frank Merle, Profiles of bounded radial solutions of the focusing, energy-critical wave equation, Geom. Funct. Anal. 22 (2012), no. 3, 639–698. MR 2972605, DOI 10.1007/s00039-012-0174-7
- Thomas Duyckaerts, Carlos Kenig, and Frank Merle, Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 5, 1389–1454. MR 2966655, DOI 10.4171/JEMS/336
- T. Duyckaerts, C. E. Kenig, and F. Merle, Classification of the radial solutions of the focusing, energy-critical wave equation. Camb. J. Math., 1(1):75–144, 2013.
- Thomas Duyckaerts, Carlos Kenig, and Frank Merle, Exterior energy bounds for the critical wave equation close to the ground state, Comm. Math. Phys. 379 (2020), no. 3, 1113–1175. MR 4163362, DOI 10.1007/s00220-020-03757-6
- Thomas Duyckaerts, Carlos Kenig, and Frank Merle, Decay estimates for nonradiative solutions of the energy-critical focusing wave equation, J. Geom. Anal. 31 (2021), no. 7, 7036–7074. MR 4289254, DOI 10.1007/s12220-020-00591-z
- T. Duyckaerts, C. E. Kenig, and F. Merle, Soliton resolution for the radial critical wave equation in all odd space dimensions. Acta Math., to appear.
- Thomas Duyckaerts and Frank Merle, Dynamics of threshold solutions for energy-critical wave equation, Int. Math. Res. Pap. IMRP 4 (2007), Art. ID rpn002, 67 pp. (2008). MR 2416069
- Thomas Duyckaerts and Frank Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal. 18 (2009), no. 6, 1787–1840. MR 2491692, DOI 10.1007/s00039-009-0707-x
- W. Eckhaus and P. Schuur, The emergence of solitons of the Korteweg-de Vries equation from arbitrary initial conditions, Math. Methods Appl. Sci. 5 (1983), no. 1, 97–116. MR 690898, DOI 10.1002/mma.1670050108
- E. Fermi, J. Pasta, and S. Ulam, S. Los Alamos report LA-1940, 1955.
- Patrick Gérard, Description du défaut de compacité de l’injection de Sobolev, ESAIM Control Optim. Calc. Var. 3 (1998), 213–233 (French, with French summary). MR 1632171, DOI 10.1051/cocv:1998107
- J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995), no. 1, 50–68. MR 1351643, DOI 10.1006/jfan.1995.1119
- Roland Grinis, Quantization of time-like energy for wave maps into spheres, Comm. Math. Phys. 352 (2017), no. 2, 641–702. MR 3627409, DOI 10.1007/s00220-016-2766-9
- Jacek Jendrej, Construction of two-bubble solutions for the energy-critical NLS, Anal. PDE 10 (2017), no. 8, 1923–1959. MR 3694010, DOI 10.2140/apde.2017.10.1923
- Jacek Jendrej, Construction of two-bubble solutions for energy-critical wave equations, Amer. J. Math. 141 (2019), no. 1, 55–118. MR 3904767, DOI 10.1353/ajm.2019.0002
- J. Jendrej, M. Kowalczyk, and A. Lawrie, Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line, Duke Math. J., To appear.
- Jacek Jendrej and Andrew Lawrie, An asymptotic expansion of two-bubble wave maps in high equivariance classes, Anal. PDE 15 (2022), no. 2, 327–403. MR 4409881, DOI 10.2140/apde.2022.15.327
- J. Jendrej and A. Lawrie, Continuous time soliton resolution for two-bubble equivariant wave maps, Math. Res. Lett., To appear.
- J. Jendrej and A. Lawrie, Uniquness of two-bubble wave maps in high equivariant classes. to appear in Comm. Pure Appl. Math.
- Jacek Jendrej and Andrew Lawrie, Two-bubble dynamics for threshold solutions to the wave maps equation, Invent. Math. 213 (2018), no. 3, 1249–1325. MR 3842064, DOI 10.1007/s00222-018-0804-2
- Hao Jia and Carlos Kenig, Asymptotic decomposition for semilinear wave and equivariant wave map equations, Amer. J. Math. 139 (2017), no. 6, 1521–1603. MR 3730929, DOI 10.1353/ajm.2017.0039
- Carlos E. Kenig and Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math. 201 (2008), no. 2, 147–212. MR 2461508, DOI 10.1007/s11511-008-0031-6
- Joachim Krieger, Kenji Nakanishi, and Wilhelm Schlag, Global dynamics away from the ground state for the energy-critical nonlinear wave equation, Amer. J. Math. 135 (2013), no. 4, 935–965. MR 3086065, DOI 10.1353/ajm.2013.0034
- Joachim Krieger, Kenji Nakanishi, and Wilhelm Schlag, Center-stable manifold of the ground state in the energy space for the critical wave equation, Math. Ann. 361 (2015), no. 1-2, 1–50. MR 3302610, DOI 10.1007/s00208-014-1059-x
- J. Krieger, W. Schlag, and D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math. 171 (2008), no. 3, 543–615. MR 2372807, DOI 10.1007/s00222-007-0089-3
- Hans Lindblad and Christopher D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), no. 2, 357–426. MR 1335386, DOI 10.1006/jfan.1995.1075
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109–145 (English, with French summary). MR 778970, DOI 10.1016/s0294-1449(16)30428-0
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201. MR 834360, DOI 10.4171/RMI/6
- Nicholas Manton and Paul Sutcliffe, Topological solitons, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004. MR 2068924, DOI 10.1017/CBO9780511617034
- Yvan Martel and Frank Merle, Description of two soliton collision for the quartic gKdV equation, Ann. of Math. (2) 174 (2011), no. 2, 757–857. MR 2831108, DOI 10.4007/annals.2011.174.2.2
- Yvan Martel and Frank Merle, Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. Math. 183 (2011), no. 3, 563–648. MR 2772088, DOI 10.1007/s00222-010-0283-6
- Yvan Martel and Frank Merle, Inelasticity of soliton collisions for the 5D energy critical wave equation, Invent. Math. 214 (2018), no. 3, 1267–1363. MR 3878731, DOI 10.1007/s00222-018-0822-0
- F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2D, Internat. Math. Res. Notices 8 (1998), 399–425. MR 1628235, DOI 10.1155/S1073792898000270
- Camil Muscalu and Wilhelm Schlag, Classical and multilinear harmonic analysis. Vol. II, Cambridge Studies in Advanced Mathematics, vol. 138, Cambridge University Press, Cambridge, 2013. MR 3052499
- J. Nahas, Scattering of wave maps from $\Bbb R^{2+1}$ to general targets, Calc. Var. Partial Differential Equations 46 (2013), no. 1-2, 427–437. MR 3016515, DOI 10.1007/s00526-011-0489-5
- K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation, J. Differential Equations 250 (2011), no. 5, 2299–2333. MR 2756065, DOI 10.1016/j.jde.2010.10.027
- K. Nakanishi and W. Schlag, Global dynamics above the ground state for the nonlinear Klein-Gordon equation without a radial assumption, Arch. Ration. Mech. Anal. 203 (2012), no. 3, 809–851. MR 2928134, DOI 10.1007/s00205-011-0462-7
- Fabrice Planchon, John G. Stalker, and A. Shadi Tahvildar-Zadeh, $L^p$ estimates for the wave equation with the inverse-square potential, Discrete Contin. Dyn. Syst. 9 (2003), no. 2, 427–442. MR 1952384, DOI 10.3934/dcds.2003.9.427
- Jie Qing, On singularities of the heat flow for harmonic maps from surfaces into spheres, Comm. Anal. Geom. 3 (1995), no. 1-2, 297–315. MR 1362654, DOI 10.4310/CAG.1995.v3.n2.a4
- Jie Qing and Gang Tian, Bubbling of the heat flows for harmonic maps from surfaces, Comm. Pure Appl. Math. 50 (1997), no. 4, 295–310. MR 1438148, DOI 10.1002/(SICI)1097-0312(199704)50:4<295::AID-CPA1>3.0.CO;2-5
- Pierre Raphaël and Igor Rodnianski, Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems, Publ. Math. Inst. Hautes Études Sci. 115 (2012), 1–122. MR 2929728, DOI 10.1007/s10240-011-0037-z
- Pierre Raphaël and Jeremie Szeftel, Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc. 24 (2011), no. 2, 471–546. MR 2748399, DOI 10.1090/S0894-0347-2010-00688-1
- Igor Rodnianski and Jacob Sterbenz, On the formation of singularities in the critical $\textrm {O}(3)$ $\sigma$-model, Ann. of Math. (2) 172 (2010), no. 1, 187–242. MR 2680419, DOI 10.4007/annals.2010.172.187
- Casey Rodriguez, Threshold dynamics for corotational wave maps, Anal. PDE 14 (2021), no. 7, 2123–2161. MR 4353567, DOI 10.2140/apde.2021.14.2123
- Casey Rodriguez, Profiles for the radial focusing energy-critical wave equation in odd dimensions, Adv. Differential Equations 21 (2016), no. 5-6, 505–570. MR 3473583
- Peter Cornelis Schuur, Asymptotic analysis of soliton problems, Lecture Notes in Mathematics, vol. 1232, Springer-Verlag, Berlin, 1986. An inverse scattering approach. MR 874343, DOI 10.1007/BFb0073054
- Harvey Segur and Mark J. Ablowitz, Asymptotic solutions and conservation laws for the nonlinear Schrödinger equation. I, J. Mathematical Phys. 17 (1976), no. 5, 710–713. MR 450822, DOI 10.1063/1.522967
- Jalal Shatah and Michael Struwe, Geometric wave equations, Courant Lecture Notes in Mathematics, vol. 2, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1998. MR 1674843
- J. Shatah and A. Tahvildar-Zadeh, Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds, Comm. Pure Appl. Math. 45 (1992), no. 8, 947–971. MR 1168115, DOI 10.1002/cpa.3160450803
- Jalal Shatah and A. Shadi Tahvildar-Zadeh, On the Cauchy problem for equivariant wave maps, Comm. Pure Appl. Math. 47 (1994), no. 5, 719–754. MR 1278351, DOI 10.1002/cpa.3160470507
- Michael Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985), no. 4, 558–581. MR 826871, DOI 10.1007/BF02567432
- Michael Struwe, Equivariant wave maps in two space dimensions, Comm. Pure Appl. Math. 56 (2003), no. 7, 815–823. Dedicated to the memory of Jürgen K. Moser. MR 1990477, DOI 10.1002/cpa.10074
- Michael Struwe, Radially symmetric wave maps from $(1+2)$-dimensional Minkowski space to the sphere, Math. Z. 242 (2002), no. 3, 407–414. MR 1985457, DOI 10.1007/s002090100345
- Michael Struwe, Radially symmetric wave maps from $(1+2)$-dimensional Minkowski space to general targets, Calc. Var. Partial Differential Equations 16 (2003), no. 4, 431–437. MR 1971037, DOI 10.1007/s00526-002-0156-y
- Terence Tao, Global regularity of wave maps. II. Small energy in two dimensions, Comm. Math. Phys. 224 (2001), no. 2, 443–544. MR 1869874, DOI 10.1007/PL00005588
- Terence Tao, A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations, Dyn. Partial Differ. Equ. 4 (2007), no. 1, 1–53. MR 2304091, DOI 10.4310/DPDE.2007.v4.n1.a1
- Peter Topping, Repulsion and quantization in almost-harmonic maps, and asymptotics of the harmonic map flow, Ann. of Math. (2) 159 (2004), no. 2, 465–534. MR 2081434, DOI 10.4007/annals.2004.159.465
- Peter Miles Topping, Rigidity in the harmonic map heat flow, J. Differential Geom. 45 (1997), no. 3, 593–610. MR 1472890
- N. J. Zabusky and M. D. Kruskal, Interaction of “solitons” in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15 (1965), no. 6, 240.
Bibliographic Information
- Jacek Jendrej
- Affiliation: Institut de Mathématiques de Jussieu, Sorbonne Univeristé, 4 place Jussieu, 75005 Paris, France
- MR Author ID: 1060238
- Email: jendrej@imj-prg.fr
- Andrew Lawrie
- Affiliation: Department of Mathematics, University of Maryland, 4176 Campus Drive – William E. Kirwan Hall, College Park, MD 20742-4015
- MR Author ID: 995944
- ORCID: 0000-0002-9579-5760
- Email: alawrie@umd.edu
- Received by editor(s): October 4, 2021
- Received by editor(s) in revised form: October 5, 2021, January 20, 2022, June 24, 2022, July 14, 2022, and October 29, 2024
- Published electronically: December 3, 2024
- Additional Notes: The first author was supported by ANR-18-CE40-0028 project ESSED. The second author was supported by NSF grant DMS-1954455, a Sloan Research Fellowship, and the Solomon Buchsbaum Research Fund.
- © Copyright 2024 American Mathematical Society
- Journal: J. Amer. Math. Soc.
- MSC (2020): Primary 35L71; Secondary 35B40, 37K40
- DOI: https://doi.org/10.1090/jams/1012