Algebraic cobordism and a Conner–Floyd isomorphism for algebraic K-theory
HTML articles powered by AMS MathViewer
- by Toni Annala, Marc Hoyois and Ryomei Iwasa;
- J. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/jams/1045
- Published electronically: March 11, 2024
- HTML | PDF | Request permission
Abstract:
We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable $\infty$-category of non-$\mathbb {A}^1$-invariant motivic spectra, which turns out to be equivalent to the $\infty$-category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this $\infty$-category satisfies $\mathbb {P}^1$-homotopy invariance and weighted $\mathbb {A}^1$-homotopy invariance, which we use in place of $\mathbb {A}^1$-homotopy invariance to obtain analogues of several key results from $\mathbb {A}^1$-homotopy theory. These allow us in particular to define a universal oriented motivic $\mathbb {E}_\infty$-ring spectrum $\mathrm {MGL}$. We then prove that the algebraic K-theory of a qcqs derived scheme $X$ can be recovered from its $\mathrm {MGL}$-cohomology via a Conner–Floyd isomorphism \[ \mathrm {MGL}^{**}(X)\otimes _{\mathrm {L}{}}\mathbb {Z}[\beta ^{\pm 1}]\simeq \mathrm {K}{}^{**}(X), \] where $\mathrm {L}{}$ is the Lazard ring and $\mathrm {K}{}^{p,q}(X)=\mathrm {K}{}_{2q-p}(X)$. Finally, we prove a Snaith theorem for the periodized version of $\mathrm {MGL}$.References
- Toni Annala and Ryomei Iwasa, Cohomology of the moduli stack of algebraic vector bundles. part A, Adv. Math. 409 (2022), no. part A, Paper No. 108638, 25. MR 4473636, DOI 10.1016/j.aim.2022.108638
- Toni Annala and Ryomei Iwasa, Motivic spectra and universality of K-theory, arXiv:2204.03434, 2023.
- Toni Annala, Bivariant derived algebraic cobordism, J. Algebraic Geom. 30 (2021), no. 2, 205–252. MR 4233182, DOI 10.1090/jag/754
- Toni Annala, Precobordism and cobordism, Algebra Number Theory 15 (2021), no. 10, 2571–2646. MR 4377859, DOI 10.2140/ant.2021.15.2571
- Toni Annala, Base independent algebraic cobordism, J. Pure Appl. Algebra 226 (2022), no. 6, Paper No. 106977, 44. MR 4346005, DOI 10.1016/j.jpaa.2021.106977
- Toni Annala, Chern classes in precobordism theories, J. Eur. Math. Soc. (JEMS) 25 (2023), no. 4, 1379–1422. MR 4577967, DOI 10.4171/jems/1219
- Toni Annala, Derived algebraic cobordism, Ph.D. Thesis, University of British Columbia, arXiv:2203.12096, 2022.
- Ko Aoki, Posets for which Verdier duality holds, Selecta Math. (N.S.) 29 (2023), no. 5, Paper No. 78, 22. MR 4656893, DOI 10.1007/s00029-023-00887-2
- Toni Annala and Shoji Yokura, Bivariant algebraic cobordism with bundles, Algebr. Geom. 10 (2023), no. 4, 461–488. MR 4606410, DOI 10.14231/ag-2023-015
- Tom Bachmann, Rigidity in étale motivic stable homotopy theory, Algebr. Geom. Topol. 21 (2021), no. 1, 173–209. MR 4224739, DOI 10.2140/agt.2021.21.173
- Clark Barwick, Saul Glasman, and Denis Nardin, Dualizing cartesian and cocartesian fibrations, Theory Appl. Categ. 33 (2018), Paper No. 4, 67–94. MR 3746613
- Tom Bachmann and Marc Hoyois, Norms in motivic homotopy theory, Astérisque 425 (2021), ix+207 (English, with English and French summaries). MR 4288071, DOI 10.24033/ast
- B. Bhatt and J. Lurie, Absolute prismatic cohomology, arXiv:2201.06120v1, 2022.
- Bhargav Bhatt, Matthew Morrow, and Peter Scholze, Topological Hochschild homology and integral $p$-adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 199–310. MR 3949030, DOI 10.1007/s10240-019-00106-9
- F. Binda, D. Park, and P. A. Østvær, Logarithmic motivic homotopy theory, arXiv:2303.02729, 2023.
- Bhargav Bhatt and Peter Scholze, Prisms and prismatic cohomology, Ann. of Math. (2) 196 (2022), no. 3, 1135–1275. MR 4502597, DOI 10.4007/annals.2022.196.3.5
- G. Cortiñas, C. Haesemeyer, and C. Weibel, $K$-regularity, $cdh$-fibrant Hochschild homology, and a conjecture of Vorst, J. Amer. Math. Soc. 21 (2008), no. 2, 547–561. MR 2373359, DOI 10.1090/S0894-0347-07-00571-1
- Denis-Charles Cisinski, Descente par éclatements en $K$-théorie invariante par homotopie, Ann. of Math. (2) 177 (2013), no. 2, 425–448 (French, with English and French summaries). MR 3010804, DOI 10.4007/annals.2013.177.2.2
- Dustin Clausen and Akhil Mathew, Hyperdescent and étale $K$-theory, Invent. Math. 225 (2021), no. 3, 981–1076. MR 4296353, DOI 10.1007/s00222-021-01043-3
- Elden Elmanto, Marc Hoyois, Adeel A. Khan, Vladimir Sosnilo, and Maria Yakerson, Modules over algebraic cobordism, Forum Math. Pi 8 (2020), e14, 44. MR 4190058, DOI 10.1017/fmp.2020.13
- David Gepner and Victor Snaith, On the motivic spectra representing algebraic cobordism and algebraic $K$-theory, Doc. Math. 14 (2009), 359–396. MR 2540697, DOI 10.4171/dm/276
- Michiel Hazewinkel, Formal groups and applications, Pure and Applied Mathematics, vol. 78, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506881
- M. Hoyois, J. Jelisiejew, D. Nardin, B. Totaro, and M. Yakerson, The Hilbert scheme of infinite affine space and algebraic $K$-theory, J. Eur. Math. Soc. (2024), Preprint, arXiv:2002.11439, DOI 10.4171/JEMS/1340.
- Marc Hoyois, Sarah Scherotzke, and Nicolò Sibilla, Higher traces, noncommutative motives, and the categorified Chern character, Adv. Math. 309 (2017), 97–154. MR 3607274, DOI 10.1016/j.aim.2017.01.008
- Jeremy Hahn and Allen Yuan, Exotic multiplications on periodic complex bordism, J. Topol. 13 (2020), no. 4, 1839–1852. MR 4186145, DOI 10.1112/topo.12169
- Adeel A. Khan, Virtual excess intersection theory, Ann. K-Theory 6 (2021), no. 3, 559–570. MR 4310329, DOI 10.2140/akt.2021.6.559
- S. Kelly and H. Miyazaki, Modulus sheaves with transfers, arXiv:2106.12837, 2021.
- A. A. Khan and D. Rydh, Virtual Cartier divisors and blow-ups, arXiv:1802.05702v2, 2019.
- Marc Levine, Comparison of cobordism theories, J. Algebra 322 (2009), no. 9, 3291–3317. MR 2567421, DOI 10.1016/j.jalgebra.2009.03.032
- J. Lurie, A survey of elliptic cohomology, Algebraic topology, Abel Symp., vol. 4, Springer, Berlin, 2009, pp. 219–277. MR 2597740, DOI 10.1007/978-3-642-01200-6_{9}
- J. Lurie, Chromatic homotopy theory, Lecture Notes, 2010, https://www.math.ias.edu/~lurie/252x.html.
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- Fabien Morel and Vladimir Voevodsky, $\textbf {A}^1$-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45–143 (2001). MR 1813224, DOI 10.1007/BF02698831
- Yukiyoshi Nakkajima and Atsushi Shiho, Weight filtrations on log crystalline cohomologies of families of open smooth varieties, Lecture Notes in Mathematics, vol. 1959, Springer-Verlag, Berlin, 2008. MR 2450600, DOI 10.1007/978-3-540-70565-9
- Niko Naumann, Markus Spitzweck, and Paul Arne Østvær, Motivic Landweber exactness, Doc. Math. 14 (2009), 551–593. MR 2565902, DOI 10.4171/dm/282
- D. Orlov, A. Vishik, and V. Voevodsky, An exact sequence for $K^M_\ast /2$ with applications to quadratic forms, Ann. of Math. (2) 165 (2007), no. 1, 1–13. MR 2276765, DOI 10.4007/annals.2007.165.1
- I. Panin, Oriented cohomology theories of algebraic varieties, $K$-Theory 30 (2003), no. 3, 265–314. Special issue in honor of Hyman Bass on his seventieth birthday. Part III. MR 2064242, DOI 10.1023/B:KTHE.0000019788.33790.cb
- Ivan Panin, Konstantin Pimenov, and Oliver Röndigs, A universality theorem for Voevodsky’s algebraic cobordism spectrum, Homology Homotopy Appl. 10 (2008), no. 2, 211–226. MR 2475610
- Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042
- Marco Schlichting, Hermitian $K$-theory, derived equivalences and Karoubi’s fundamental theorem, J. Pure Appl. Algebra 221 (2017), no. 7, 1729–1844. MR 3614976, DOI 10.1016/j.jpaa.2016.12.026
- Markus Spitzweck and Paul Arne Østvær, The Bott inverted infinite projective space is homotopy algebraic $K$-theory, Bull. Lond. Math. Soc. 41 (2009), no. 2, 281–292. MR 2496504, DOI 10.1112/blms/bdn124
- Dennis Sullivan, René Thom’s work on geometric homology and bordism, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 3, 341–350. MR 2058291, DOI 10.1090/S0273-0979-04-01026-2
- Michael Temkin, Tame distillation and desingularization by $p$-alterations, Ann. of Math. (2) 186 (2017), no. 1, 97–126. MR 3665001, DOI 10.4007/annals.2017.186.1.3
- V. Voevodsky, The Milnor Conjecture, Preprint, 1996, MPIM:703.
- Vladimir Voevodsky, $\mathbf A^1$-homotopy theory, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), 1998, pp. 579–604. MR 1648048
- Vladimir Voevodsky, Motivic cohomology with $\mathbb {Z}/2$-coefficients, Publ. Math. Inst. Hautes Études Sci. 98 (2003), no. 1, pp. 59–104.
- Vladimir Voevodsky, On motivic cohomology with $\mathbf Z/l$-coefficients, Ann. of Math. (2) 174 (2011), no. 1, 401–438. MR 2811603, DOI 10.4007/annals.2011.174.1.11
- Charles A. Weibel, Homotopy algebraic $K$-theory, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987) Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 461–488. MR 991991, DOI 10.1090/conm/083/991991
Bibliographic Information
- Toni Annala
- Affiliation: School of Mathematics, Institute for Advanced Study, 1 Einstein Drive, Princeton, New Jersey 08540
- MR Author ID: 1390473
- ORCID: 0000-0001-6419-0278
- Email: tannala@ias.edu
- Marc Hoyois
- Affiliation: Fakultät für Mathematik, Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
- MR Author ID: 1094020
- Email: marc.hoyois@ur.de
- Ryomei Iwasa
- Affiliation: Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay, 307 rue Michel Magat, F-91405 Orsay, France
- MR Author ID: 1280663
- ORCID: 0000-0001-9054-9184
- Email: ryomei.iwasa@cnrs.fr
- Received by editor(s): March 30, 2023
- Received by editor(s) in revised form: February 4, 2024
- Published electronically: March 11, 2024
- Additional Notes: The first author was partially supported by the National Science Foundation under Grant No. DMS-1926686, whilst in residence at the Institute for Advanced Study in Princeton. The second author was partially supported by the Collaborative Research Center SFB 1085 Higher Invariants funded by the DFG. The third author was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 101001474)
- © Copyright 2024 American Mathematical Society
- Journal: J. Amer. Math. Soc.
- MSC (2020): Primary 14F42, 19E08, 14A30
- DOI: https://doi.org/10.1090/jams/1045