Cluster structures on braid varieties
HTML articles powered by AMS MathViewer
- by Roger Casals, Eugene Gorsky, Mikhail Gorsky, Ian Le, Linhui Shen and José Simental;
- J. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/jams/1048
- Published electronically: October 1, 2024
- HTML | PDF
Abstract:
We show the existence of cluster $\mathcal {A}$-structures and cluster Poisson structures on any braid variety, for any simple Lie group. The construction is achieved via weave calculus and a tropicalization of Lusztig’s coordinates. Several explicit seeds are provided and the quiver and cluster variables are readily computable. We prove that these upper cluster algebras equal their cluster algebras, show local acyclicity, and explicitly determine their DT-transformations as the twist automorphisms of braid varieties. The main result also resolves the conjecture of B. Leclerc [Adv. Math. 300 (2016), pp. 190–228] on the existence of cluster algebra structures on the coordinate rings of open Richardson varieties.References
- Dave Anderson, Effective divisors on Bott-Samelson varieties, Transform. Groups 24 (2019), no. 3, 691–711. MR 3989686, DOI 10.1007/s00031-018-9493-6
- Georgia Benkart, Seok-Jin Kang, Se-jin Oh, and Euiyong Park, Construction of irreducible representations over Khovanov-Lauda-Rouquier algebras of finite classical type, Int. Math. Res. Not. IMRN 5 (2014), 1312–1366. MR 3178600, DOI 10.1093/imrn/rns244
- Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), no. 1, 1–52. MR 2110627, DOI 10.1215/S0012-7094-04-12611-9
- Arkady Berenstein and Andrei Zelevinsky, Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math. 143 (2001), no. 1, 77–128. MR 1802793, DOI 10.1007/s002220000102
- Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266
- P. P. Boalch, Stokes matrices, Poisson Lie groups and Frobenius manifolds, Invent. Math. 146 (2001), no. 3, 479–506. MR 1869848, DOI 10.1007/s002220100170
- Philip Boalch, Quasi-Hamiltonian geometry of meromorphic connections, Duke Math. J. 139 (2007), no. 2, 369–405. MR 2352135, DOI 10.1215/S0012-7094-07-13924-3
- Philip Boalch, Wild character varieties, points on the Riemann sphere and Calabi’s examples, Representation theory, special functions and Painlevé equations—RIMS 2015, Adv. Stud. Pure Math., vol. 76, Math. Soc. Japan, Tokyo, 2018, pp. 67–94. MR 3837919, DOI 10.2969/aspm/07610067
- K. A. Brown, K. R. Goodearl, and M. Yakimov, Poisson structures on affine spaces and flag varieties. I. Matrix affine Poisson space, Adv. Math. 206 (2006), no. 2, 567–629. MR 2263715, DOI 10.1016/j.aim.2005.10.004
- A. B. Buan, O. Iyama, I. Reiten, and J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent groups, Compos. Math. 145 (2009), no. 4, 1035–1079. MR 2521253, DOI 10.1112/S0010437X09003960
- Eric Bucher and John Machacek, Reddening sequences for Banff quivers and the class ${\cal P}$, SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), Paper No. 049, 11. MR 4108215, DOI 10.3842/SIGMA.2020.049
- Peigen Cao, On exchange matrices from string diagrams, Preprint arXiv:2203.07822, 2022.
- Peigen Cao and Bernhard Keller, On Leclerc’s conjectural cluster structures for open Richardson varieties, to appear in Am. J. Math., Preprint arXiv:2207.10184, 2022.
- Roger Casals and Honghao Gao, Infinitely many Lagrangian fillings, Ann. of Math. (2) 195 (2022), no. 1, 207–249. MR 4358415, DOI 10.4007/annals.2022.195.1.3
- Roger Casals and Honghao Gao, A Lagrangian filling for every cluster seed, Invent. Math. 237 (2024), no. 2, 809–868. MR 4768635, DOI 10.1007/s00222-024-01268-y
- Roger Casals, Eugene Gorsky, Mikhail Gorsky, and José Simental, Algebraic weaves and braid varieties, Preprint arXiv:2012.06931, 2020.
- Roger Casals, Eugene Gorsky, Mikhail Gorsky, and José Simental, Positroid links and braid varieties, Preprint arXiv:2105.13948, 2021.
- Roger Casals and Lenhard Ng, Braid loops with infinite monodromy on the Legendrian contact DGA, J. Topol. 15 (2022), no. 4, 1927–2016. MR 4584583, DOI 10.1112/topo.12264
- Roger Casals and Daping Weng, Microlocal theory of Legendrian links and cluster algebras, Geom. Topol. 28 (2024), no. 2, 901–1000. MR 4718130, DOI 10.2140/gt.2024.28.901
- Roger Casals and Eric Zaslow, Legendrian weaves: $N$-graph calculus, flag moduli and applications, Geom. Topol. 26 (2022), no. 8, 3589–3745. MR 4562568, DOI 10.2140/gt.2022.26.3589
- Cesar Ceballos, Jean-Philippe Labbé, and Christian Stump, Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebraic Combin. 39 (2014), no. 1, 17–51. MR 3144391, DOI 10.1007/s10801-013-0437-x
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Modern Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2010. Reprint of the 1997 edition. MR 2838836, DOI 10.1007/978-0-8176-4938-8
- Ben Elias, A diamond lemma for Hecke-type algebras, Trans. Amer. Math. Soc. 375 (2022), no. 3, 1883–1915. MR 4378083, DOI 10.1090/tran/8554
- Ben Elias and Geordie Williamson, Soergel calculus, Represent. Theory 20 (2016), 295–374. MR 3555156, DOI 10.1090/ert/481
- Laura Escobar, Brick manifolds and toric varieties of brick polytopes, Electron. J. Combin. 23 (2016), no. 2, Paper 2.25, 18. MR 3512647, DOI 10.37236/5038
- V. V. Fock and A. B. Goncharov, Cluster $\scr X$-varieties, amalgamation, and Poisson-Lie groups, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 27–68. MR 2263192, DOI 10.1007/978-0-8176-4532-8_{2}
- Vladimir Fock and Alexander Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1–211. MR 2233852, DOI 10.1007/s10240-006-0039-4
- Vladimir V. Fock and Alexander B. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 6, 865–930 (English, with English and French summaries). MR 2567745, DOI 10.24033/asens.2112
- Sergey Fomin, Michael Shapiro, and Dylan Thurston, Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), no. 1, 83–146. MR 2448067, DOI 10.1007/s11511-008-0030-7
- Sergey Fomin, Lauren Williams, and Andrei Zelevinsky, Introduction to Cluster Algebras. chapter 6. arXiv:2008.09189, 2020.
- Sergey Fomin and Andrei Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), no. 2, 335–380. MR 1652878, DOI 10.1090/S0894-0347-99-00295-7
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529. MR 1887642, DOI 10.1090/S0894-0347-01-00385-X
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras II, Invent. Math., 154(1):63–121, 2003.
- Chris Fraser, Quasi-homomorphisms of cluster algebras, Adv. in Appl. Math. 81 (2016), 40–77. MR 3551663, DOI 10.1016/j.aam.2016.06.005
- Chris Fraser and Melissa Sherman-Bennett, Positroid cluster structures from relabeled plabic graphs, Algebr. Comb. 5 (2022), no. 3, 469–513. MR 4456866, DOI 10.5802/alco.220
- Pavel Galashin and Thomas Lam, The twist for Richardson varieties, Preprint arXiv:2204.05935, 2022.
- Pavel Galashin and Thomas Lam, Positroid varieties and cluster algebras, Ann. Sci. Éc. Norm. Supér. (4) 56 (2023), no. 3, 859–884 (English, with English and French summaries). MR 4650160, DOI 10.24033/asens.2545
- Pavel Galashin, Thomas Lam, and Melissa Sherman-Bennett, Braid variety cluster structures, II: general type, Preprint arXiv:2301.07268, 2023.
- Pavel Galashin, Thomas Lam, Melissa Sherman-Bennett, and David Speyer, Braid variety cluster structures, I: 3D plabic graphs, Preprint arXiv:2210.04778, 2022.
- Honghao Gao, Linhui Shen, and Daping Weng, Augmentations, fillings, and clusters, Geom. Funct. Anal. 34 (2024), no. 3, 798–867. MR 4743511, DOI 10.1007/s00039-024-00673-y
- Christof Geiss, Bernard Leclerc, and Jan Schröer, Partial flag varieties and preprojective algebras, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 3, 825–876 (English, with English and French summaries). MR 2427512, DOI 10.5802/aif.2371
- Christof Geiß, Bernard Leclerc, and Jan Schröer, Kac-Moody groups and cluster algebras, Adv. Math. 228 (2011), no. 1, 329–433. MR 2822235, DOI 10.1016/j.aim.2011.05.011
- Christof Geiss, Bernard Leclerc, and Jan Schröer, Factorial cluster algebras, Doc. Math. 18 (2013), 249–274. MR 3064982, DOI 10.4171/dm/396
- Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, vol. 167, American Mathematical Society, Providence, RI, 2010. MR 2683456, DOI 10.1090/surv/167
- Alexander Goncharov and Linhui Shen, Donaldson-Thomas transformations of moduli spaces of G-local systems, Adv. Math. 327 (2018), 225–348. MR 3761995, DOI 10.1016/j.aim.2017.06.017
- Alexander Goncharov and Linhui Shen, Quantum geometry of moduli spaces of local systems and representation theory. Preprint arXiv:1904.10491, 2019.
- Mark Gross, Paul Hacking, and Sean Keel, Birational geometry of cluster algebras, Algebr. Geom. 2 (2015), no. 2, 137–175. MR 3350154, DOI 10.14231/AG-2015-007
- Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), no. 2, 497–608. MR 3758151, DOI 10.1090/jams/890
- Paul Hacking and Sean Keel, Mirror symmetry and cluster algebras, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 671–697. MR 3966785, DOI 10.1142/11060
- Martin Härterich, The T-equivariant cohomology of Bott-Samelson varieties, Preprint arXiv:math/0412337, 2004.
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Grace Ingermanson, Cluster Algebras of Open Richardson Varieties, ProQuest LLC, Ann Arbor, MI, 2019. Thesis (Ph.D.)–University of Michigan. MR 4071729
- Tamás Kálmán, Braid-positive Legendrian links, Int. Math. Res. Not. , posted on (2006), Art ID 14874, 29. MR 2272097, DOI 10.1155/IMRN/2006/14874
- Joel Kamnitzer, Mirković-Vilonen cycles and polytopes, Ann. of Math. (2) 171 (2010), no. 1, 245–294. MR 2630039, DOI 10.4007/annals.2010.171.245
- Bernhard Keller, Quiver mutation and combinatorial DT-invariants, Discrete Math. Theoret. Comput. Sci. 2017.
- Bernhard Keller and Laurent Demonet, A survey on maximal green sequences, Representation theory and beyond, Contemp. Math., vol. 758, Amer. Math. Soc., [Providence], RI, [2020] ©2020, pp. 267–286. MR 4186974, DOI 10.1090/conm/758/15239
- Sefi Ladkani, On cluster algebras from once punctured closed surfaces. Preprint arXiv:1310.4454, 2013.
- Thomas Lam and David E. Speyer, Cohomology of cluster varieties I: Locally acyclic case, Algebra Number Theory 16 (2022), no. 1, 179–230. MR 4384567, DOI 10.2140/ant.2022.16.179
- Niels Lauritzen and Jesper Funch Thomsen, Line bundles on Bott-Samelson varieties, J. Algebraic Geom. 13 (2004), no. 3, 461–473. MR 2047677, DOI 10.1090/S1056-3911-03-00358-8
- B. Leclerc, Cluster structures on strata of flag varieties, Adv. Math. 300 (2016), 190–228. MR 3534832, DOI 10.1016/j.aim.2016.03.018
- G. Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568. MR 1327548, DOI 10.1007/978-1-4612-0261-5_{2}0
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- R. J. Marsh and K. Rietsch, Parametrizations of flag varieties, Represent. Theory 8 (2004), 212–242. MR 2058727, DOI 10.1090/S1088-4165-04-00230-4
- Anton Mellit, Cell decompositions of character varieties, Preprint arXiv:1905.10685, 2019.
- Etienne Ménard, Cluster algebras associated with open Richardson varieties: an algorithm to compute initial seeds, Preprint arXiv:2201.10292, 2022.
- Matthew R Mills, On the relationship between green-to-red sequences, local-acyclicity, and upper cluster algebras, Preprint arXiv:1804.00479, 2018.
- Greg Muller, Locally acyclic cluster algebras, Adv. Math. 233 (2013), 207–247. MR 2995670, DOI 10.1016/j.aim.2012.10.002
- Greg Muller, $\scr A=\scr U$ for locally acyclic cluster algebras, SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), Paper 094, 8. MR 3261850, DOI 10.3842/SIGMA.2014.094
- Greg Muller, The existence of a maximal green sequence is not invariant under quiver mutation, Electron. J. Combin. 23 (2016), no. 2, Paper 2.47, 23. MR 3512669, DOI 10.37236/5412
- Greg Muller, Skein and cluster algebras of marked surfaces, Quantum Topol. 7 (2016), no. 3, 435–503. MR 3551171, DOI 10.4171/QT/79
- Fan Qin, Bases for upper cluster algebras and tropical points, J. Eur. Math. Soc. (JEMS) 26 (2024), no. 4, 1255–1312. MR 4721032, DOI 10.4171/jems/1308
- Joshua S. Scott, Grassmannians and cluster algebras, Proc. London Math. Soc. (3) 92 (2006), no. 2, 345–380. MR 2205721, DOI 10.1112/S0024611505015571
- K. Serhiyenko, M. Sherman-Bennett, and L. Williams, Cluster structures in Schubert varieties in the Grassmannian, Proc. Lond. Math. Soc. (3) 119 (2019), no. 6, 1694–1744. MR 4295518, DOI 10.1112/plms.12281
- Vladimir Shchigolev, Bases of $T$-equivariant cohomology of Bott-Samelson varieties, J. Aust. Math. Soc. 104 (2018), no. 1, 80–126. MR 3745416, DOI 10.1017/S1446788717000064
- Linhui Shen and Daping Weng, Cluster structures on double Bott-Samelson cells, Forum Math. Sigma 9 (2021), Paper No. e66, 89. MR 4321011, DOI 10.1017/fms.2021.59
- Yasutaka Sibuya, Global theory of a second order linear ordinary differential equation with a polynomial coefficient, North-Holland Mathematics Studies, Vol. 18, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 486867
- Ravi Vakil, The rising sea, foundations of algebraic geometry. 2015.
- Ben Webster and Milen Yakimov, A Deodhar-type stratification on the double flag variety, Transform. Groups 12 (2007), no. 4, 769–785. MR 2365444, DOI 10.1007/s00031-007-0061-8
- Daping Weng, Donaldson-Thomas transformation of double Bruhat cells in semisimple Lie groups, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 2, 353–436 (English, with English and French summaries). MR 4094561, DOI 10.24033/asens.2424
Bibliographic Information
- Roger Casals
- Affiliation: Department of Mathematics, University of California Davis, One Shields Avenue, Davis, CA 95616 USA
- MR Author ID: 1096004
- ORCID: 0000-0003-3004-6176
- Email: casals@math.ucdavis.edu
- Eugene Gorsky
- Affiliation: Department of Mathematics, University of California Davis, One Shields Avenue, Davis, CA 95616 USA
- MR Author ID: 796278
- ORCID: 0000-0002-9572-4938
- Email: egorskiy@math.ucdavis.edu
- Mikhail Gorsky
- Affiliation: Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria; and Universität Hamburg, Fachbereich Mathematik, Bundesstraße 55, 20146 Hamburg, Germany
- MR Author ID: 924524
- ORCID: 0000-0003-0547-3571
- Email: mikhail.gorskii@univie.ac.at
- Ian Le
- Affiliation: Mathematical Sciences Institute, Hanna Neumann Building #145, Science Road, The Australian National University, Canberra ACT 2601 Australia
- MR Author ID: 766385
- ORCID: 0000-0001-6751-0898
- Email: ian.le@anu.edu.au
- Linhui Shen
- Affiliation: Department of Mathematics, Michigan State University, 619 Red Cedar Road, East Lansing, MI, 48824 USA
- MR Author ID: 1066889
- Email: linhui@math.msu.edu
- José Simental
- Affiliation: Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, Mexico City, Mexico
- ORCID: 0000-0002-8626-4634
- Email: simental@im.unam.mx
- Received by editor(s): September 14, 2022
- Received by editor(s) in revised form: March 18, 2024
- Published electronically: October 1, 2024
- Additional Notes: The first author was supported by the NSF CAREER DMS-1942363 and a Sloan Research Fellowship of the Alfred P. Sloan Foundation. The second author was partially supported by the NSF grant DMS-1760329. The third author was supported by the French ANR grant CHARMS (ANR-19-CE40-0017). This work is a part of a project that had received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 101001159). Parts of this work were done during stays of M. Gorsky at the University of Stuttgart, and he is very grateful to Steffen Koenig for the hospitality. The third author acknowledges support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB 1624 – “Higher structures, moduli spaces and integrability” – 506632645. The fifth author was partially supported by the Collaboration Grant for Mathematicians from the Simons Foundation (#711926) and the NSF grant DMS-2200738. The sixth author was financially supported by the Max Planck Institute for Mathematics, where his work was carried out.
- © Copyright 2024 by the authors
- Journal: J. Amer. Math. Soc.
- MSC (2020): Primary 13F60, 14M15, 20F36
- DOI: https://doi.org/10.1090/jams/1048