Cuspidal cohomology classes for $\operatorname {GL}_n(\mathbf {Z})$
HTML articles powered by AMS MathViewer
- by George Boxer, Frank Calegari and Toby Gee;
- J. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/jams/1050
- Published electronically: October 11, 2024
- HTML | PDF | Request permission
Abstract:
We prove the existence of a cuspidal automorphic representation $\pi$ for $\operatorname {GL}_{79}/\mathbf {Q}$ of level one and weight zero. We construct $\pi$ using symmetric power functoriality and a change of weight theorem, using Galois deformation theory. As a corollary, we construct the first known cuspidal cohomology classes in $H^*(\operatorname {GL}_{n}(\mathbf {Z}),\mathbf {C})$ for any $n > 1$.References
- Rebecca Bellovin and Toby Gee, $G$-valued local deformation rings and global lifts, Algebra Number Theory 13 (2019), no. 2, 333–378. MR 3927049, DOI 10.2140/ant.2019.13.333
- Thomas Barnet-Lamb, Toby Gee, and David Geraghty, The Sato-Tate conjecture for Hilbert modular forms, J. Amer. Math. Soc. 24 (2011), no. 2, 411–469. MR 2748398, DOI 10.1090/S0894-0347-2010-00689-3
- Thomas Barnet-Lamb, Toby Gee, and David Geraghty, Serre weights for rank two unitary groups, Math. Ann. 356 (2013), no. 4, 1551–1598. MR 3072811, DOI 10.1007/s00208-012-0893-y
- Thomas Barnet-Lamb, Toby Gee, David Geraghty, and Richard Taylor, Potential automorphy and change of weight, Ann. of Math. (2) 179 (2014), no. 2, 501–609. MR 3152941, DOI 10.4007/annals.2014.179.2.3
- A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, 2nd ed., Mathematical Surveys and Monographs, vol. 67, American Mathematical Society, Providence, RI, 2000. MR 1721403, DOI 10.1090/surv/067
- Craig Citro and Alexandru Ghitza, Computing level one Hecke eigensystems (mod $p$), LMS J. Comput. Math. 16 (2013), 246–270. MR 3104940, DOI 10.1112/S1461157013000132
- Gaëtan Chenevier, On level one cuspidal automorphic representations of $\mathrm {GL}_n/\mathbf {Q}$, http://gaetan.chenevier.perso.math.cnrs.fr/clozel_talk.pdf, 2023.
- Laurent Clozel, Michael Harris, and Richard Taylor, Automorphy for some $l$-adic lifts of automorphic mod $l$ Galois representations, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1–181. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras. MR 2470687, DOI 10.1007/s10240-008-0016-1
- J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, Functoriality for the classical groups, Publ. Math. Inst. Hautes Études Sci. 99 (2004), 163–233. MR 2075885, DOI 10.1007/s10240-004-0020-z
- Laurent Clozel, Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and $L$-functions, Vol. I (Ann Arbor, MI, 1988) Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 77–159 (French). MR 1044819
- Laurent Clozel, Motives and automorphic representations, Autour des motifs—École d’été Franco-Asiatique de Géométrie Algébrique et de Théorie des Nombres/Asian-French Summer School on Algebraic Geometry and Number Theory. Vol. III, Panor. Synthèses, vol. 49, Soc. Math. France, Paris, 2016, pp. 29–60 (English, with English and French summaries). MR 3642468
- Gaëtan Chenevier and David Renard, Level one algebraic cusp forms of classical groups of small rank, Mem. Amer. Math. Soc. 237 (2015), no. 1121, v+122. MR 3399888, DOI 10.1090/memo/1121
- Gaëtan Chenevier and Olivier Taïbi, Discrete series multiplicities for classical groups over $\bf Z$ and level 1 algebraic cusp forms, Publ. Math. Inst. Hautes Études Sci. 131 (2020), 261–323. MR 4106796, DOI 10.1007/s10240-020-00115-z
- Stéfane Fermigier, Annulation de la cohomologie cuspidale de sous-groupes de congruence de $\textrm {GL}_n(\mathbf Z)$, Math. Ann. 306 (1996), no. 2, 247–256 (French). MR 1411347, DOI 10.1007/BF01445250
- Najmuddin Fakhruddin, Chandrashekhar Khare, and Stefan Patrikis, Lifting and automorphy of reducible $\textrm {mod}\,p$ Galois representations over global fields, Invent. Math. 228 (2022), no. 1, 415–492. MR 4392460, DOI 10.1007/s00222-021-01085-7
- Toby Gee, Companion forms over totally real fields. II, Duke Math. J. 136 (2007), no. 2, 275–284. MR 2286631, DOI 10.1215/S0012-7094-07-13622-6
- David Geraghty, Modularity lifting theorems for ordinary Galois representations, Math. Ann. 373 (2019), no. 3-4, 1341–1427. MR 3953131, DOI 10.1007/s00208-018-1742-4
- Toby Gee and David Geraghty, Companion forms for unitary and symplectic groups, Duke Math. J. 161 (2012), no. 2, 247–303. MR 2876931, DOI 10.1215/00127094-1507376
- Robert Guralnick, Florian Herzig, and Pham Huu Tiep, Adequate subgroups and indecomposable modules, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 4, 1231–1291. MR 3626555, DOI 10.4171/JEMS/692
- Fernando Q. Gouvêa, Where the slopes are, J. Ramanujan Math. Soc. 16 (2001), no. 1, 75–99. MR 1824885
- Benedict H. Gross, A tameness criterion for Galois representations associated to modular forms (mod $p$), Duke Math. J. 61 (1990), no. 2, 445–517. MR 1074305, DOI 10.1215/S0012-7094-90-06119-8
- Günter Harder and A. Raghuram, Eisenstein cohomology for $\textrm {GL}_N$ and the special values of Rankin-Selberg $L$-functions, Annals of Mathematics Studies, vol. 203, Princeton University Press, Princeton, NJ, 2020. MR 3970997
- Chandrashekhar Khare, Serre’s conjecture and its consequences, Jpn. J. Math. 5 (2010), no. 1, 103–125. MR 2609324, DOI 10.1007/s11537-010-0946-5
- Stephen D. Miller, The highest lowest zero and other applications of positivity, Duke Math. J. 112 (2002), no. 1, 83–116. MR 1890648, DOI 10.1215/S0012-9074-02-11213-7
- James Newton and Jack A. Thorne, Symmetric power functoriality for holomorphic modular forms, Publ. Math. Inst. Hautes Études Sci. 134 (2021), 1–116. MR 4349240, DOI 10.1007/s10240-021-00127-3
- A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 1, 119–141 (English, with French summary). MR 1061762, DOI 10.5802/jtnb.22
- H. P. F. Swinnerton-Dyer, On $l$-adic representations and congruences for coefficients of modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin-New York, 1973, pp. 1–55. MR 406931
- Jean-Pierre Serre, Sur les représentations modulaires de degré $2$ de $\mathrm {Gal}(\overline {\mathbf {Q}}/\mathbf {Q})$, Duke Math. J. 54 (1987), no. 1, 179–230 (French). MR 885783, DOI 10.1215/S0012-7094-87-05413-5
- Jack Thorne, On the automorphy of $l$-adic Galois representations with small residual image, J. Inst. Math. Jussieu 11 (2012), no. 4, 855–920. With an appendix by Robert Guralnick, Florian Herzig, Richard Taylor and Thorne. MR 2979825, DOI 10.1017/S1474748012000023
- Jack A. Thorne, A 2-adic automorphy lifting theorem for unitary groups over CM fields, Math. Z. 285 (2017), no. 1-2, 1–38. MR 3598803, DOI 10.1007/s00209-016-1681-2
Bibliographic Information
- George Boxer
- Affiliation: Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
- MR Author ID: 894221
- ORCID: 0000-0002-6027-7509
- Email: g.boxer@imperial.ac.uk
- Frank Calegari
- Affiliation: The University of Chicago, 5734 S University Ave, Chicago, Illinois 60637
- MR Author ID: 678536
- Email: fcale@math.uchicago.edu
- Toby Gee
- Affiliation: Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
- MR Author ID: 801400
- Email: toby.gee@imperial.ac.uk
- Received by editor(s): October 25, 2023
- Received by editor(s) in revised form: April 22, 2024, and May 8, 2024
- Published electronically: October 11, 2024
- Additional Notes: The first author was supported by a Royal Society University Research Fellowship. The second author was supported in part by NSF Grant DMS-2001097. The third author was supported in part by an ERC Advanced grant. This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 884596)
- © Copyright 2024 American Mathematical Society
- Journal: J. Amer. Math. Soc.
- MSC (2020): Primary 11F75
- DOI: https://doi.org/10.1090/jams/1050
Dedicated: To Laurent Clozel, in admiration