Descent and cyclotomic redshift for chromatically localized algebraic $K$-theory
HTML articles powered by AMS MathViewer
- by Shay Ben-Moshe, Shachar Carmeli, Tomer M. Schlank and Lior Yanovski;
- J. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/jams/1052
- Published electronically: November 18, 2024
- HTML | PDF | Request permission
Abstract:
We prove that $T(n+1)$-localized algebraic $K$-theory satisfies descent for $\pi$-finite $p$-group actions on stable $\infty$-categories of chromatic height up to $n$, extending a result of Clausen–Mathew–Naumann–Noel for finite $p$-groups. Using this, we show that it sends $T(n)$-local Galois extensions to $T(n+1)$-local Galois extensions. Furthermore, we show that it sends cyclotomic extensions of height $n$ to cyclotomic extensions of height $n+1$, extending a result of Bhatt–Clausen–Mathew for $n=0$. As a consequence, we deduce that $K(n+1)$-localized $K$-theory satisfies hyperdescent along the cyclotomic tower of any $T(n)$-local ring. Counterexamples to such cyclotomic hyperdescent for $T(n+1)$-localized $K$-theory were constructed by Burklund, Hahn, Levy and the third author, thereby disproving the telescope conjecture.References
- Christian Ausoni, Haldun Özgür Bayındır, and Tasos Moulinos, Adjunction of roots, algebraic $K$-theory and chromatic redshift, arXiv preprint, arXiv:2211.16929, 2022.
- Christian Ausoni and John Rognes, Algebraic $K$-theory of topological $K$-theory, Acta Math. 188 (2002), no. 1, 1–39. MR 1947457, DOI 10.1007/BF02392794
- Christian Ausoni and John Rognes, The chromatic red-shift in algebraic K-theory, Enseign. Math. 54 (2008), no. 2, 13–15.
- Romie Banerjee, Galois descent for real spectra, J. Homotopy Relat. Struct. 12 (2017), no. 2, 273–297. MR 3654353, DOI 10.1007/s40062-016-0127-1
- Bhargav Bhatt, Dustin Clausen, and Akhil Mathew, Remarks on $K (1)$-local $K$-theory, Selecta Math. (N.S.) 26 (2020), no. 3, Paper No. 39, 16. MR 4110725, DOI 10.1007/s00029-020-00566-6
- Tobias Barthel, Shachar Carmeli, Tomer M. Schlank, and Lior Yanovski, The chromatic Fourier transform, Forum Math. Pi 12 (2024), Paper No. e8, 96. MR 4728491, DOI 10.1017/fmp.2024.5
- Andrew J. Blumberg, David Gepner, and Gonçalo Tabuada, A universal characterization of higher algebraic $K$-theory, Geom. Topol. 17 (2013), no. 2, 733–838. MR 3070515, DOI 10.2140/gt.2013.17.733
- Andrew J. Blumberg, David Gepner, and Gonçalo Tabuada, Uniqueness of the multiplicative cyclotomic trace, Adv. Math. 260 (2014), 191–232. MR 3209352, DOI 10.1016/j.aim.2014.02.004
- Robert Burklund, Jeremy Hahn, Ishan Levy, and Tomer M. Schlank, $K$-theoretic counterexamples to Ravenel’s telescope conjecture, Preprint, arXiv:2310.17459, 2023.
- Shay Ben-Moshe and Tomer M. Schlank, Higher semiadditive algebraic K-theory and redshift, Compos. Math. 160 (2024), no. 2, 237–287. MR 4679205, DOI 10.1112/s0010437x23007595
- A. K. Bousfield, On the telescopic homotopy theory of spaces, Trans. Amer. Math. Soc. 353 (2001), no. 6, 2391–2426. MR 1814075, DOI 10.1090/S0002-9947-00-02649-0
- Robert Burklund, Tomer M. Schlank, and Allen Yuan, The chromatic Nullstellensatz, Preprint, arXiv:2207.09929, 2022.
- Bastiaan Cnossen, Shachar Carmeli, Maxime Ramzi, and Lior Yanovski, Characters and transfer maps via categorified traces, Preprint, arXiv:2210.17364, 2022.
- Baptiste Calmès, Emanuele Dotto, Yonatan Harpaz, Fabian Hebestreit, Markus Land, Kristian Moi, Denis Nardin, Thomas Nikolaus, and Wolfgang Steimle, Hermitian K-theory for stable $\infty$-categories II: Cobordism categories and additivity, arXiv preprint arXiv:2009.07224, 2020.
- Dustin Clausen and Akhil Mathew, Hyperdescent and étale $K$-theory, Invent. Math. 225 (2021), no. 3, 981–1076. MR 4296353, DOI 10.1007/s00222-021-01043-3
- Dustin Clausen, Akhil Mathew, Niko Naumann, and Justin Noel, Descent and vanishing in chromatic algebraic $K$-theory via group actions, Ann. Sci. Éc. Norm. Supér. (4) 57 (2024), no. 4, 1135–1190 (English, with English and French summaries). MR 4773302
- Kęstutis Česnavičius and Peter Scholze, Purity for flat cohomology, Ann. of Math. (2) 199 (2024), no. 1, 51–180. MR 4681144, DOI 10.4007/annals.2024.199.1.2
- Shachar Carmeli, Tomer M. Schlank, and Lior Yanovski, Ambidexterity and height, Adv. Math. 385 (2021), Paper No. 107763, 90. MR 4246977, DOI 10.1016/j.aim.2021.107763
- Shachar Carmeli, Tomer M. Schlank, and Lior Yanovski, Chromatic cyclotomic extensions, Preprint, arXiv:2103.02471, 2021.
- Shachar Carmeli, Tomer M. Schlank, and Lior Yanovski, Ambidexterity in chromatic homotopy theory, Invent. Math. 228 (2022), no. 3, 1145–1254. MR 4419631, DOI 10.1007/s00222-022-01099-9
- Ethan S. Devinatz and Michael J. Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004), no. 1, 1–47. MR 2030586, DOI 10.1016/S0040-9383(03)00029-6
- W. G. Dwyer and S. A. Mitchell, On the $K$-theory spectrum of a ring of algebraic integers, $K$-Theory 14 (1998), no. 3, 201–263. MR 1633505, DOI 10.1023/A:1007792408694
- Peter J. Freyd, Abelian categories, vol. 1964, Harper & Row, New York, 1964.
- David Gepner and Tyler Lawson, Brauer groups and Galois cohomology of commutative ring spectra, Compos. Math. 157 (2021), no. 6, 1211–1264. MR 4270473, DOI 10.1112/s0010437x21007065
- Peter J. Haine, From nonabelian basechange to basechange with coefficients, Preprint, arXiv:2108.03545, 2021.
- Yonatan Harpaz, Ambidexterity and the universality of finite spans, Proc. Lond. Math. Soc. (3) 121 (2020), no. 5, 1121–1170. MR 4133704, DOI 10.1112/plms.12367
- Gijs Heuts and Jacob Lurie, Ambidexterity, Topology and field theories, Contemp. Math., vol. 613, Amer. Math. Soc., Providence, RI, 2014, pp. 79–110. MR 3221291, DOI 10.1090/conm/613/12236
- Peter J. Haine, Mauro Porta, and Jean-Baptiste Teyssier, The homotopy-invariance of constructible sheaves, Homology Homotopy Appl. 25 (2023), no. 2, 97–128. MR 4651175, DOI 10.4310/hha.2023.v25.n2.a6
- Jeremy Hahn and Dylan Wilson, Redshift and multiplication for truncated Brown-Peterson spectra, Ann. of Math. (2) 196 (2022), no. 3, 1277–1351. MR 4503327, DOI 10.4007/annals.2022.196.3.6
- Markus Land, Akhil Mathew, Lennart Meier, and Georg Tamme, Purity in chromatically localized algebraic $K$-theory, J. Amer. Math. Soc. 37 (2024), no. 4, 1011–1040. MR 4777639, DOI 10.1090/jams/1043
- Sil Linskens, Denis Nardin, and Luca Pol, Global homotopy theory via partially lax limits, Preprint, arXiv:2206.01556, 2022.
- Markus Land and Georg Tamme, On the $K$-theory of pullbacks, Ann. of Math. (2) 190 (2019), no. 3, 877–930. MR 4024564, DOI 10.4007/annals.2019.190.3.4
- Jacob Lurie, Higher algebra, http://www.math.harvard.edu/~lurie/.
- Jacob Lurie, Spectral algebraic geometry, https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf.
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- Akhil Mathew, The Galois group of a stable homotopy theory, Adv. Math. 291 (2016), 403–541. MR 3459022, DOI 10.1016/j.aim.2015.12.017
- Haynes Miller, Finite localizations, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1-2, 383–389. Papers in honor of José Adem (Spanish). MR 1317588
- Stephen A. Mitchell, Topological $K$-theory of algebraic $K$-theory spectra, $K$-Theory 21 (2000), no. 3, 229–247. MR 1803229, DOI 10.1023/A:1026580718473
- Itamar Mor, Picard and Brauer groups of $K(n)$-local spectra via profinite Galois descent, Preprint, arXiv:2306.05393, 2023.
- John Rognes, Galois extensions of structured ring spectra. Stably dualizable groups, Mem. Amer. Math. Soc. 192 (2008), no. 898, viii+137. MR 2387923, DOI 10.1090/memo/0898
- Stefan Schwede and Brooke Shipley, Stable model categories are categories of modules, Topology 42 (2003), no. 1, 103–153. MR 1928647, DOI 10.1016/S0040-9383(02)00006-X
- Friedhelm Waldhausen, Algebraic $K$-theory of spaces, localization, and the chromatic filtration of stable homotopy, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 173–195. MR 764579, DOI 10.1007/BFb0075567
- Craig Westerland, A higher chromatic analogue of the image of $J$, Geom. Topol. 21 (2017), no. 2, 1033–1093. MR 3626597, DOI 10.2140/gt.2017.21.1033
- Allen Yuan, Examples of chromatic redshift in algebraic $K$-theory, J. Eur. Math. Soc. (JEMS), DOI:10.4171/JEMS/1527, 2024.
Bibliographic Information
- Shay Ben-Moshe
- Affiliation: Einstein Institute of Mathematics, Hebrew University, Givat Ram. Jerusalem, 9190401, Israel
- ORCID: 0000-0001-8070-5235
- Shachar Carmeli
- Affiliation: Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
- MR Author ID: 1434108
- ORCID: 0000-0003-3621-410X
- Tomer M. Schlank
- Affiliation: Einstein Institute of Mathematics, Hebrew University, Givat Ram. Jerusalem, 9190401, Israel
- MR Author ID: 976682
- Lior Yanovski
- Affiliation: Einstein Institute of Mathematics, Hebrew University, Givat Ram. Jerusalem, 9190401, Israel
- MR Author ID: 1239045
- Received by editor(s): November 2, 2023
- Received by editor(s) in revised form: September 25, 2024
- Published electronically: November 18, 2024
- Additional Notes: The second author was partially supported by the Danish National Research Foundation through the Copenhagen Centre for Geometry and Topology (DNRF151). The third author was supported by ISF1588/18, BSF 2018389 and the ERC under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 101125896).
- © Copyright 2024 American Mathematical Society
- Journal: J. Amer. Math. Soc.
- MSC (2020): Primary 19D99, 55P42
- DOI: https://doi.org/10.1090/jams/1052