Non-vanishing of geometric Whittaker coefficients for reductive groups
HTML articles powered by AMS MathViewer
- by Joakim Færgeman and Sam Raskin;
- J. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/jams/1051
- Published electronically: April 25, 2025
Abstract:
We prove that cuspidal automorphic $D$-modules have non-vanishing Whittaker coefficients, generalizing known results in the geometric Langlands program from $GL_n$ to general reductive groups. The key tool is a microlocal interpretation of Whittaker coefficients.
We establish various exactness properties in the geometric Langlands context that may be of independent interest. Specifically, we show Hecke functors are $t$-exact on the category of tempered $D$-modules, strengthening a classical result of Gaitsgory (with different hypotheses) for $GL_n$. We also show that Whittaker coefficient functors are $t$-exact for sheaves with nilpotent singular support. An additional consequence of our results is that the tempered, restricted geometric Langlands conjecture must be $t$-exact.
We apply our results to show that for suitably irreducible local systems, Whittaker-normalized Hecke eigensheaves are perverse sheaves that are irreducible on each connected component of $\operatorname {Bun}_G$.
References
- Dima Arinkin, Irreducible connections admit generic oper structures, Preprint, arXiv:1602.08989, 2016.
- Dima Arinkin, Dario Beraldo, Lin Chen, Joakim Færgeman, Dennis Gaitsgory, Kevin Lin, Sam Raskin, and Nick Rozenblyum, Proof of the geometric Langlands conjecture II: Kac-Moody localization and the FLE, 2024, https://people.mpim-bonn.mpg.de/gaitsgde/GLC/Loc.pdf.
- Dima Arinkin, Dario Beraldo, Dennis Gaitsgory, Sam Raskin, and Nick Rozenblyum, Notes from the workshop: towards the proof of the geometric Langlands conjecture, 2014, https://sites.google.com/site/geometriclanglands2014/notes.
- D. Arinkin and D. Gaitsgory, Singular support of coherent sheaves and the geometric Langlands conjecture, Selecta Math. (N.S.) 21 (2015), no. 1, 1–199. MR 3300415, DOI 10.1007/s00029-014-0167-5
- Dima Arinkin, Dennis Gaitsgory, David Kazhdan, Sam Raskin, Nick Rozenblyum, and Yasha Varshavsky, The stack of local systems with restricted variation and geometric Langlands theory with nilpotent singular support, Preprint, arXiv:2010.01906, 2020.
- Dima Arinkin, Dennis Gaitsgory, David Kazhdan, Sam Raskin, Nick Rozenblyum, and Yasha Varshavsky, Duality for automorphic sheaves with nilpotent singular support, Preprint, arXiv:2012.07665, 2020.
- Dima Arinkin, Dennis Gaitsgory, David Kazhdan, Sam Raskin, Nick Rozenblyum, and Yasha Varshavsky, Automorphic functions as the trace of Frobenius, Preprint, arXiv:2102.07906, 2021.
- S. Arkhipov, A. Braverman, R. Bezrukavnikov, D. Gaitsgory, and I. Mirković, Modules over the small quantum group and semi-infinite flag manifold, Transform. Groups 10 (2005), no. 3-4, 279–362. MR 2183116, DOI 10.1007/s00031-005-0401-5
- Sasha Beilinson and Vladimir Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves, http://www.math.uchicago.edu/~mitya/langlands/hitchin/BD-hitchin.pdf.
- Gwyn Bellamy and Victor Ginzburg, Hamiltonian reduction and nearby cycles for mirabolic $\scr {D}$-modules, Adv. Math. 269 (2015), 71–161. MR 3281133, DOI 10.1016/j.aim.2014.10.002
- David Ben-Zvi and David Nadler, Betti geometric Langlands, Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 3–41. MR 3821166, DOI 10.1090/pspum/097.2/01
- Dario Beraldo, On the extended Whittaker category, Selecta Math. (N.S.) 25 (2019), no. 2, Paper No. 28, 55. MR 3934652, DOI 10.1007/s00029-019-0478-7
- Dario Beraldo, On the geometric Ramanujan conjecture, Preprint, arXiv:2103.17211, 2021.
- Joseph Bernstein and A. Beilinson, Localisation de $\mathfrak {g}$-modules, CR Acad. Sci. Paris 292 (1981), 15–18.
- Roman Bezrukavnikov, Alexander Braverman, and Ivan Mirkovic, Some results about geometric Whittaker model, Adv. Math. 186 (2004), no. 1, 143–152. MR 2065510, DOI 10.1016/j.aim.2003.07.011
- Gebhard Böckle, Michael Harris, Chandrashekhar Khare, and Jack A. Thorne, $\hat G$-local systems on smooth projective curves are potentially automorphic, Acta Math. 223 (2019), no. 1, 1–111. MR 4018263, DOI 10.4310/ACTA.2019.v223.n1.a1
- W. Borho and J.-L. Brylinski, Differential operators on homogeneous spaces. III. Characteristic varieties of Harish-Chandra modules and of primitive ideals, Invent. Math. 80 (1985), no. 1, 1–68. MR 784528, DOI 10.1007/BF01388547
- A. Braverman, M. Finkelberg, D. Gaitsgory, and I. Mirković, Intersection cohomology of Drinfeld’s compactifications, Selecta Math. (N.S.) 8 (2002), no. 3, 381–418. MR 1931170, DOI 10.1007/s00029-002-8111-5
- A. Braverman and D. Gaitsgory, Geometric Eisenstein series, Invent. Math. 150 (2002), no. 2, 287–384. MR 1933587, DOI 10.1007/s00222-002-0237-8
- Alexander Braverman and Dennis Gaitsgory, Deformations of local systems and Eisenstein series, Geom. Funct. Anal. 17 (2008), 1788–1850.
- W. Casselman and J. Shalika, The unramified principal series of $p$-adic groups. II. The Whittaker function, Compositio Math. 41 (1980), no. 2, 207–231. MR 581582
- Lin Chen, Deligne-Lusztig duality on the moduli stack of bundles, Represent. Theory 27 (2023), 608–668. MR 4619506, DOI 10.1090/ert/645
- Lin Chen and Yuchen Fu, An extension of the Kazhdan-Lusztig equivalence, Preprint, arXiv:2111.14606, 2021.
- P. Deligne, Formes modulaires et représentations de $\textrm {GL}(2)$, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin-New York, 1973, pp. 55–105 (French). MR 347738
- Vladimir Drinfeld and Dennis Gaitsgory, On some finiteness questions for algebraic stacks, Geom. Funct. Anal. 23 (2013), no. 1, 149–294. MR 3037900, DOI 10.1007/s00039-012-0204-5
- Vladimir Drinfeld and Dennis Gaitsgory, Geometric constant term functor(s), Selecta Math. (N.S.) 22 (2016), no. 4, 1881–1951. MR 3573949, DOI 10.1007/s00029-016-0269-3
- Joakim Færgeman and Sam Raskin, The Arinkin-Gaitsgory temperedness conjecture, Bull. Lond. Math. Soc. 55 (2023), no. 3, 1419–1446. MR 4618235, DOI 10.1112/blms.12801
- Edward Frenkel, Recent advances in the Langlands program, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 2, 151–184. MR 2043750, DOI 10.1090/S0273-0979-04-01001-8
- Edward Frenkel and Dennis Gaitsgory, Fusion and convolution: applications to affine Kac-Moody algebras at the critical level, Pure Appl. Math. Q. 2 (2006), no. 4, Special Issue: In honor of Robert D. MacPherson., 1255–1312. MR 2282421, DOI 10.4310/PAMQ.2006.v2.n4.a14
- Edward Frenkel and Dennis Gaitsgory, Local geometric Langlands correspondence and affine Kac-Moody algebras, Algebraic Geometry and Number Theory, Springer, 2006, pp. 69–260.
- Edward Frenkel and Dennis Gaitsgory, Local geometric Langlands correspondence: the spherical case, Algebraic Analysis and Around: In Honor of Professor Masaki Kashiwara’s 60th Birthday, Mathematical Society of Japan, 2009, pp. 167–186.
- Edward Frenkel and Dennis Gaitsgory, Weyl modules and opers without monodromy, Arithmetic and Geometry Around Quantization, Springer, 2010, pp. 101–121.
- E. Frenkel, D. Gaitsgory, D. Kazhdan, and K. Vilonen, Geometric realization of Whittaker functions and the Langlands conjecture, J. Amer. Math. Soc. 11 (1998), no. 2, 451–484. MR 1484882, DOI 10.1090/S0894-0347-98-00260-4
- E. Frenkel, D. Gaitsgory, and K. Vilonen, Whittaker patterns in the geometry of moduli spaces of bundles on curves, Ann. of Math. (2) 153 (2001), no. 3, 699–748. MR 1836286, DOI 10.2307/2661366
- E. Frenkel, D. Gaitsgory, and K. Vilonen, On the geometric Langlands conjecture, J. Amer. Math. Soc. 15 (2002), no. 2, 367–417. MR 1887638, DOI 10.1090/S0894-0347-01-00388-5
- D. Gaitsgory, On a vanishing conjecture appearing in the geometric Langlands correspondence, Ann. of Math. (2) 160 (2004), no. 2, 617–682. MR 2123934, DOI 10.4007/annals.2004.160.617
- Dennis Gaitsgory, A generalized vanishing conjecture, 2010, http://people.math.harvard.edu/~gaitsgde/GL/GenVan.pdf.
- Dennis Gaitsgory, Contractibility of the space of rational maps, Invent. Math. 191 (2013), no. 1, 91–196. MR 3004779, DOI 10.1007/s00222-012-0392-5
- Dennis Gaitsgory, ind-coherent sheaves, Mosc. Math. J. 13 (2013), no. 3, 399–528, 553 (English, with English and Russian summaries). MR 3136100, DOI 10.17323/1609-4514-2013-13-3-399-528
- Dennis Gaitsgory, Opers, 2014, https://sites.google.com/site/geometriclanglands2014/notes.
- Dennis Gaitsgory, Outline of the proof of the geometric Langlands conjecture for $GL_2$, Astérisque 370 (2015), 1–112 (English, with English and French summaries). MR 3364744
- Dennis Gaitsgory, A “strange” functional equation for Eisenstein series and miraculous duality on the moduli stack of bundles, Ann. Sci. Éc. Norm. Supér. (4) (2017).
- D. Gaitsgory, D. Kazhdan, N. Rozenblyum, and Y. Varshavsky, A toy model for the Drinfeld-Lafforgue shtuka construction, Indag. Math. (N.S.) 33 (2022), no. 1, 39–189. MR 4368480, DOI 10.1016/j.indag.2021.11.002
- Dennis Gaitsgory and Sam Raskin, Proof of the geometric Langlands conjecture V: the multiplicity one theorem, 2024, https://people.mpim-bonn.mpg.de/gaitsgde/GLC/multone.pdf.
- Dennis Gaitsgory and Nick Rozenblyum, A study in derived algebraic geometry. Vol. I. Correspondences and duality, Mathematical Surveys and Monographs, vol. 221, American Mathematical Society, Providence, RI, 2017. MR 3701352, DOI 10.1090/surv/221.1
- Dennis Gaitsgory and Nick Rozenblyum, A study in derived algebraic geometry: volume II: deformations, Lie theory and formal geometry, vol. 221, American Mathematical Society, 2020.
- Stephen S. Gelbart, Automorphic forms on adèle groups, Annals of Mathematics Studies, No. 83, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1975. MR 379375
- V. Ginsburg, Characteristic varieties and vanishing cycles, Invent. Math. 84 (1986), no. 2, 327–402. MR 833194, DOI 10.1007/BF01388811
- R. Howe and I. I. Piatetski-Shapiro, A counterexample to the “generalized Ramanujan conjecture” for (quasi-) split groups, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 315–322. MR 546605
- Masaki Kashiwara and Takahiro Kawai, On holonomic systems of microdifferential equations. III. Systems with regular singularities, Publ. Res. Inst. Math. Sci. 17 (1981), no. 3, 813–979. MR 650216, DOI 10.2977/prims/1195184396
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006, DOI 10.1007/978-3-662-02661-8
- Bertram Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), no. 2, 101–184. MR 507800, DOI 10.1007/BF01390249
- Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Revised edition, Graduate Studies in Mathematics, vol. 22, American Mathematical Society, Providence, RI, 2000. MR 1721834, DOI 10.1090/gsm/022
- Kevin Lin, Poincare Series and Miraculous Duality, ProQuest LLC, Ann Arbor, MI, 2023. Thesis (Ph.D.)–Harvard University. MR 4625376
- Ivan Losev, Bernstein inequality and holonomic modules, Adv. Math. 308 (2017), 941–963. With an appendix by Losev and Pavel Etingof. MR 3600079, DOI 10.1016/j.aim.2016.12.033
- Jacob Lurie, Higher algebra, 2012, http://math.harvard.edu/~lurie/papers/HigherAlgebra.pdf.
- Jacob Lurie, Spectral algebraic geometry, 2016, Preprint, www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf.
- I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95–143. MR 2342692, DOI 10.4007/annals.2007.166.95
- C. Mœglin and J.-L. Waldspurger, Modèles de Whittaker dégénérés pour des groupes $p$-adiques, Math. Z. 196 (1987), no. 3, 427–452 (French). MR 913667, DOI 10.1007/BF01200363
- David Nadler and Jeremy Taylor, The Whittaker functional is a shifted microstalk, Preprint, arXiv:2206.09216, 2022.
- Sam Raskin, Homological methods in semi-infinite contexts, 2019, https://gauss.math.yale.edu/~sr2532//topalg.pdf.
- Sam Raskin, A generalization of the $b$-function lemma, Compos. Math. 157 (2021), no. 10, 2199–2214. MR 4311556, DOI 10.1112/S0010437X21007491
- Sam Raskin, Chiral principal series categories I: finite dimensional calculations, Adv. Math. 388 (2021), 107856.
- Sam Raskin, $\mathcal W$-algebras and Whittaker categories, Selecta Math. (N.S.) 27 (2021), no. 3, Paper No. 46, 114. MR 4273643, DOI 10.1007/s00029-021-00641-6
- Sam Raskin, Affine Beilinson-Bernstein localization at the critical level for $GL_2$, Ann. Math. 195 (2022), no. 1, 251–335.
- François Rodier, Modèle de Whittaker et caractères de représentations, Non-Commutative Harmonic Analysis, Springer, 1975, pp. 151–171.
- Takeshi Saito, The characteristic cycle and the singular support of a constructible sheaf, Invent. Math. 207 (2017), no. 2, 597–695. MR 3595935, DOI 10.1007/s00222-016-0675-3
- Yiannis Sakellaridis and Jonathan Wang, Intersection complexes and unramified $L$-factors, J. Amer. Math. Soc. 35 (2022), no. 3, 799–910. MR 4433079, DOI 10.1090/jams/990
- Simon Schieder, Picard-Lefschetz oscillators for the Drinfeld-Lafforgue-Vinberg degeneration for $\rm SL_2$, Duke Math. J. 167 (2018), no. 5, 835–921. MR 3782063, DOI 10.1215/00127094-2017-0044
- Freydoon Shahidi, Arthur packets and the Ramanujan conjecture, Kyoto J. Math. 51 (2011), no. 1, 1–23. MR 2784745, DOI 10.1215/0023608X-2010-018
Bibliographic Information
- Joakim Færgeman
- Affiliation: Department of Mathematics, Yale University, 219 Prospect St, New Haven, Connecticut 06511
- MR Author ID: 1570737
- Email: joakim.faergeman@yale.edu
- Sam Raskin
- Affiliation: Department of Mathematics, Yale University, 219 Prospect St, New Haven, Connecticut 06511
- MR Author ID: 994174
- ORCID: 0000-0003-4861-5314
- Email: sam.raskin@yale.edu
- Received by editor(s): July 27, 2022
- Received by editor(s) in revised form: May 14, 2024, and March 24, 2025
- Published electronically: April 25, 2025
- Additional Notes: The second author was supported by NSF grant DMS-2101984.
- Dedicated: Dedicated to Dennis Gaitsgory on his 50th birthday
- © Copyright 2025 by the authors
- Journal: J. Amer. Math. Soc.
- MSC (2020): Primary 14D24, 22E57; Secondary 14F10, 17B08
- DOI: https://doi.org/10.1090/jams/1051