Local-global principle and integral Tate conjecture for certain varieties
HTML articles powered by AMS MathViewer
- by Zhiyu Tian;
- J. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/jams/1054
- Published electronically: February 5, 2025
- HTML | PDF | Request permission
Abstract:
We give a geometric criterion to check the validity of the integral Tate conjecture for one-cycles on a smooth projective variety that is separably rationally connected in codimension one, and to check that the Brauer-Manin obstruction is the only obstruction to the local-global principle for zero-cycles on a separably rationally connected variety defined over a global function field.
We prove that the Brauer-Manin obstruction is the only obstruction to the local-global principle for zero-cycles on all geometrically rational surfaces defined over a global function field, and to the Hasse principle for rational points on del Pezzo surfaces of degree four defined over a global function field of odd characteristic.
Along the way, we also prove some results about the space of one-cycles on a smooth projective variety that is separably rationally connected in codimension one, which leads to the equality of the coniveau filtration and the strong coniveau filtration on degree $3$ homology of such varieties.
References
- S. S. Abhyankar, Resolution of singularities of embedded algebraic surfaces, 2nd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1617523, DOI 10.1007/978-3-662-03580-1
- Olivier Benoist, Steenrod operations and algebraic classes, Tunis. J. Math., To appear, Preprint. arXiv:2209.03685, 2022.
- Spencer Bloch, Algebraic cycles and higher $K$-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815, DOI 10.1016/0001-8708(86)90081-2
- Spencer Bloch and Arthur Ogus, Gersten’s conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4) 7 (1974), 181–201 (1975). MR 412191, DOI 10.24033/asens.1266
- Olivier Benoist and John Christian Ottem, Two coniveau filtrations, Duke Math. J. 170 (2021), no. 12, 2719–2753. MR 4305380, DOI 10.1215/00127094-2021-0055
- Armand Brumer, Remarques sur les couples de formes quadratiques, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 16, A679–A681 (French, with English summary). MR 498374
- S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983), no. 5, 1235–1253. MR 714776, DOI 10.2307/2374341
- Denis-Charles Cisinski and Frédéric Déglise, Integral mixed motives in equal characteristic, Doc. Math. Extra vol.: Alexander S. Merkurjev’s sixtieth birthday (2015), 145–194. MR 3404379
- Vincent Cossart and Olivier Piltant, Resolution of singularities of threefolds in positive characteristic. I. Reduction to local uniformization on Artin-Schreier and purely inseparable coverings, J. Algebra 320 (2008), no. 3, 1051–1082. MR 2427629, DOI 10.1016/j.jalgebra.2008.03.032
- Vincent Cossart and Olivier Piltant, Resolution of singularities of threefolds in positive characteristic. II, J. Algebra 321 (2009), no. 7, 1836–1976. MR 2494751, DOI 10.1016/j.jalgebra.2008.11.030
- Jean-Louis Colliot-Thélène, Conjectures de type local-global sur l’image des groupes de Chow dans la cohomologie étale, Algebraic $K$-theory (Seattle, WA, 1997) Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 1–12 (French). MR 1743234, DOI 10.1090/pspum/067/1743234
- Jean-Louis Colliot-Thélène, Principe local-global pour les zéro-cycles sur les surfaces réglées, J. Amer. Math. Soc. 13 (2000), no. 1, 101–127 (French). With an appendix by E. Frossard and V. Suresh. MR 1697092, DOI 10.1090/S0894-0347-99-00318-5
- Jean-Louis Colliot-Thélène, Une liste de problèmes, Mathematics going forward—collected mathematical brushstrokes, Lecture Notes in Math., vol. 2313, Springer, Cham, [2023] ©2023, pp. 7–28 (French). MR 4627946, DOI 10.1007/978-3-031-12244-6_{2}
- Jean-Louis Colliot-Thélène, Retour sur l’arithmétique des intersections de deux quadriques, J. Reine Angew. Math. 806 (2024), 147–185 (French, with English and French summaries). With an appendix by Alexander Kuznetsov. MR 4685088, DOI 10.1515/crelle-2023-0081
- Jean-Louis Colliot-Thélène and Bruno Kahn, Cycles de codimension 2 et $H^3$ non ramifié pour les variétés sur les corps finis, J. K-Theory 11 (2013), no. 1, 1–53 (French, with English and French summaries). MR 3034282, DOI 10.1017/is012009001jkt194
- Jean-Louis Colliot-Thélène and Tamás Szamuely, Autour de la conjecture de Tate à coefficients $\textbf {Z}_{\ell }$ pour les variétés sur les corps finis, The geometry of algebraic cycles, Clay Math. Proc., vol. 9, Amer. Math. Soc., Providence, RI, 2010, pp. 83–98 (French). MR 2648666
- Jean-Louis Colliot-Thélène and Federico Scavia, Sur la conjecture de Tate entière pour le produit d’une courbe et d’une surface $CH_0$-triviale sur un corps fini, Rend. Circ. Mat. Palermo (2) 72 (2023), no. 5, 2895–2927 (French, with English and French summaries). MR 4609666, DOI 10.1007/s12215-023-00870-y
- J.-L. Colliot-Thélène and Peter Swinnerton-Dyer, Zero-cycles and rational points on some surfaces over a global function field, Acta Arith. 155 (2012), no. 1, 63–70. MR 2982428, DOI 10.4064/aa155-1-6
- Jean-Louis Colliot-Thélène, Jean-Jacques Sansuc, and Christophe Soulé, Torsion dans le groupe de Chow de codimension deux, Duke Math. J. 50 (1983), no. 3, 763–801 (French). MR 714830, DOI 10.1215/S0012-7094-83-05038-X
- Jean-Louis Colliot-Thélène, Jean-Jacques Sansuc, and Peter Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces. I, J. Reine Angew. Math. 373 (1987), 37–107. MR 870307
- Jean-Louis Colliot-Thélène and Claire Voisin, Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. J. 161 (2012), no. 5, 735–801 (French, with English and French summaries). MR 2904092, DOI 10.1215/00127094-1548389
- A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93. MR 1423020, DOI 10.1007/BF02698644
- A. Johan de Jong, Families of curves and alterations, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 2, 599–621. MR 1450427, DOI 10.5802/aif.1575
- A. J. de Jong and J. Starr, Every rationally connected variety over the function field of a curve has a rational point, Amer. J. Math. 125 (2003), no. 3, 567–580. MR 1981034, DOI 10.1353/ajm.2003.0017
- Olivier Debarre and Laurent Manivel, Sur la variété des espaces linéaires contenus dans une intersection complète, Math. Ann. 312 (1998), no. 3, 549–574 (French). MR 1654757, DOI 10.1007/s002080050235
- Hélène Esnault and Olivier Wittenberg, On the cycle class map for zero-cycles over local fields, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 2, 483–520 (English, with English and French summaries). With an appendix by Spencer Bloch. MR 3481356, DOI 10.24033/asens.2288
- E. M. Friedlander and B. Mazur, Correspondence homomorphisms for singular varieties, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 3, 703–727 (English, with English and French summaries). MR 1303882, DOI 10.5802/aif.1415
- Eric M. Friedlander, Algebraic cycles, Chow varieties, and Lawson homology, Compositio Math. 77 (1991), no. 1, 55–93. MR 1091892
- Emmanuelle Frossard, Obstruction de Brauer-Manin pour les zéro-cycles sur des fibrations en variétés de Severi-Brauer, J. Reine Angew. Math. 557 (2003), 81–101 (French, with English summary). MR 1978403, DOI 10.1515/crll.2003.035
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- Thomas Geisser and Marc Levine, The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. Reine Angew. Math. 530 (2001), 55–103. MR 1807268, DOI 10.1515/crll.2001.006
- D. R. Heath-Brown, Zeros of pairs of quadratic forms, J. Reine Angew. Math. 739 (2018), 41–80. MR 3808257, DOI 10.1515/crelle-2015-0062
- Norbert Hoffmann, Rationality and Poincaré families for vector bundles with extra structure on a curve, Int. Math. Res. Not. IMRN 3 (2007), Art. ID rnm010, 30. MR 2337034, DOI 10.1093/imrn/rnm010
- Luc Illusie, Yves Laszlo, and Fabrice Orgogozo (eds.), Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents, Société Mathématique de France, Paris, 2014 (French). Séminaire à l’École Polytechnique 2006–2008. [Seminar of the Polytechnic School 2006–2008]; With the collaboration of Frédéric Déglise, Alban Moreau, Vincent Pilloni, Michel Raynaud, Joël Riou, Benoît Stroh, Michael Temkin and Weizhe Zheng; Astérisque No. 363-364 (2014). MR 3309086
- Shane Kelly, Voevodsky motives and $l$dh-descent, Astérisque 391 (2017), 125 (English, with English and French summaries). MR 3673293
- János Kollár, Yoichi Miyaoka, and Shigefumi Mori, Rationally connected varieties, J. Algebraic Geom. 1 (1992), no. 3, 429–448. MR 1158625
- Finn F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983), no. 2, 161–199. MR 702953, DOI 10.7146/math.scand.a-12001
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3
- János Kollár and Zhiyu Tian, Stable maps of curves and algebraic equivalence of $1$-cycles, Duke Math. J., To appear, Preprint, arXiv:2302.07069, 2023.
- Kees Kok and Lin Zhou, Higher Chow groups with finite coefficients and refined unramified cohomology. part B, Adv. Math. 458 (2024), no. part B, Paper No. 109972, 45. MR 4809244, DOI 10.1016/j.aim.2024.109972
- H. Blaine Lawson Jr., Algebraic cycles and homotopy theory, Ann. of Math. (2) 129 (1989), no. 2, 253–291. MR 986794, DOI 10.2307/1971448
- Paulo Lima-Filho, The topological group structure of algebraic cycles, Duke Math. J. 75 (1994), no. 2, 467–491. MR 1290199, DOI 10.1215/S0012-7094-94-07513-3
- A. S. Merkur′ev and A. A. Suslin, $K$-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1011–1046, 1135–1136 (Russian). MR 675529
- Carlo Mazza, Vladimir Voevodsky, and Charles Weibel, Lecture notes on motivic cohomology, Clay Mathematics Monographs, vol. 2, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006. MR 2242284
- Xuanyu Pan, Spaces of conics on low degree complete intersections, Trans. Amer. Math. Soc. 370 (2018), no. 8, 5381–5400. MR 3812109, DOI 10.1090/tran/7107
- R. Parimala and V. Suresh, Zero-cycles on quadric fibrations: finiteness theorems and the cycle map, Invent. Math. 122 (1995), no. 1, 83–117. MR 1354955, DOI 10.1007/BF01231440
- Raman Parimala and Venapally Suresh, Degree 3 cohomology of function fields of surfaces, Int. Math. Res. Not. IMRN 14 (2016), 4341–4374. MR 3556421, DOI 10.1093/imrn/rnv280
- Michel Raynaud and Laurent Gruson, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1–89 (French). MR 308104, DOI 10.1007/BF01390094
- S. Saito, Some observations on motivic cohomology of arithmetic schemes, Invent. Math. 98 (1989), no. 2, 371–404. MR 1016270, DOI 10.1007/BF01388859
- Shuji Saito, On the cycle map for torsion algebraic cycles of codimension two, Invent. Math. 106 (1991), no. 3, 443–460. MR 1134479, DOI 10.1007/BF01243920
- Federico Scavia, Autour de la conjecture de Tate entière pour certains produits de dimension 3 sur un corps fini, Épijournal Géom. Algébrique 6 (2022), Art. 11, 28 (French, with English and French summaries). MR 4443304
- Chad Schoen, An integral analog of the Tate conjecture for one-dimensional cycles on varieties over finite fields, Math. Ann. 311 (1998), no. 3, 493–500. MR 1637931, DOI 10.1007/s002080050197
- Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6); Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. MR 354655
- Théorie des topos et cohomologie étale des schémas, Tome 3, volume Vol. 305 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1973. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat.
- Mingmin Shen, Foliations and rational connectedness in positive characteristic, J. Algebraic Geom. 19 (2010), no. 3, 531–553. MR 2629599, DOI 10.1090/S1056-3911-10-00552-7
- P. Salberger and A. N. Skorobogatov, Weak approximation for surfaces defined by two quadratic forms, Duke Math. J. 63 (1991), no. 2, 517–536. MR 1115119, DOI 10.1215/S0012-7094-91-06322-2
- Shuji Saito and Kanetomo Sato, A finiteness theorem for zero-cycles over $p$-adic fields, Ann. of Math. (2) 172 (2010), no. 3, 1593–1639. With an appendix by Uwe Jannsen. MR 2726095, DOI 10.4007/annals.2010.172.1593
- Federico Scavia and Fumiaki Suzuki, Non-algebraic geometrically trivial cohomology classes over finite fields. part A, Adv. Math. 458 (2024), no. part A, Paper No. 109964, 30. MR 4819762, DOI 10.1016/j.aim.2024.109964
- Federico Scavia and Fumiaki Suzuki, Two coniveau filtrations and algebraic equivalence over finite fields, Algebr. Geom., To appear, arXiv:2304.08560, 2023.
- Jason Michael Starr, The maximal free rational quotient, arXiv:math/0602640, 2006.
- Jason M. Starr, Zhiyu Tian, and Runhong Zong, Weak approximation for Fano complete intersections in positive characteristic, Ann. Inst. Fourier (Grenoble) 72 (2022), no. 4, 1503–1534 (English, with English and French summaries). MR 4485832, DOI 10.5802/aif.3495
- Andrei A. Suslin, Higher Chow groups and etale cohomology, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 239–254. MR 1764203
- Andrei Suslin and Vladimir Voevodsky, Singular homology of abstract algebraic varieties, Invent. Math. 123 (1996), no. 1, 61–94. MR 1376246, DOI 10.1007/BF01232367
- Andrei Suslin and Vladimir Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 117–189. MR 1744945
- Andrei Suslin and Vladimir Voevodsky, Relative cycles and Chow sheaves, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 10–86. MR 1764199
- Zhiyu Tian, Hasse principle for three classes of varieties over global function fields, Duke Math. J. 166 (2017), no. 17, 3349–3424. MR 3724220, DOI 10.1215/00127094-2017-0034
- Zhiyu Tian, Zero cycles on rationally connected varieties over Laurent fields, Preprint, arXiv:2010.04996, 2020.
- Zhiyu Tian and Letao Zhang, Weak approximation for cubic hypersurfaces and degree 4 del Pezzo surfaces, Int. Math. Res. Not. IMRN 3 (2018), 762–784. MR 3801446, DOI 10.1093/imrn/rnw254
- Joost van Hamel, The Brauer-Manin obstruction for zero-cycles on Severi-Brauer fibrations over curves, J. London Math. Soc. (2) 68 (2003), no. 2, 317–337. MR 1994685, DOI 10.1112/S0024610703004605
- Vladimir Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. 7 (2002), 351–355. MR 1883180, DOI 10.1155/S107379280210403X
- Vladimir Voevodsky, On motivic cohomology with $\mathbf Z/l$-coefficients, Ann. of Math. (2) 174 (2011), no. 1, 401–438. MR 2811603, DOI 10.4007/annals.2011.174.1.11
- Mircea Voineagu, Semi-topological $K$-theory for certain projective varieties, J. Pure Appl. Algebra 212 (2008), no. 8, 1960–1983. MR 2414696, DOI 10.1016/j.jpaa.2008.01.004
- Claire Voisin, Stable birational invariants and the Lüroth problem, Surveys in differential geometry 2016. Advances in geometry and mathematical physics, Surv. Differ. Geom., vol. 21, Int. Press, Somerville, MA, 2016, pp. 313–342. MR 3525100
- Claire Voisin, On the coniveau of rationally connected threefolds, Geom. Topol. 26 (2022), no. 6, 2731–2772. MR 4521252, DOI 10.2140/gt.2022.26.2731
- Mark E. Walker, The morphic Abel-Jacobi map, Compos. Math. 143 (2007), no. 4, 909–944. MR 2339833, DOI 10.1112/S0010437X07002278
- Olivier Wittenberg, Intersections de deux quadriques et pinceaux de courbes de genre 1/Intersections of two quadrics and pencils of curves of genus 1, Lecture Notes in Mathematics, vol. 1901, Springer, Berlin, 2007 (French). MR 2307807, DOI 10.1007/3-540-69137-5
- Olivier Wittenberg, Rational points and zero-cycles on rationally connected varieties over number fields, Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 597–635. MR 3821185, DOI 10.1090/pspum/097.2/01717
Bibliographic Information
- Zhiyu Tian
- Affiliation: Beijing International Center for Mathematical Research, Peking University, 100871 Beijing, People’s Republic of China
- MR Author ID: 975027
- Email: zhiyutian@bicmr.pku.edu.cn
- Received by editor(s): January 2, 2023
- Received by editor(s) in revised form: February 17, 2023, October 20, 2023, January 9, 2024, July 20, 2024, September 25, 2024, and October 20, 2024
- Published electronically: February 5, 2025
- Additional Notes: This work was partially supported by NSFC grants No. 11890660, No. 11890662, No. 11871155.
- © Copyright 2025 American Mathematical Society
- Journal: J. Amer. Math. Soc.
- MSC (2020): Primary 14M22, 14G12, 14C25
- DOI: https://doi.org/10.1090/jams/1054