Local rigidity of weak or no hyperbolicity algebraic actions
HTML articles powered by AMS MathViewer
- by Zhenqi Jenny Wang;
- J. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/jams/1058
- Published electronically: April 9, 2025
- HTML | PDF | Request permission
Abstract:
In this paper we study rigidity properties of abelian \hyphenation{break-able}actions with weak or no hyperbolicity. We introduce a general strategy for proving $C^\infty$ local rigidity of algebraic actions. As a consequence, we show $C^\infty$ local rigidity for a broad class of parabolic algebraic actions on homogeneous spaces of semisimple Lie groups. This is the first time in the literature that (strong) local rigidity for these actions is addressed.References
- Masayuki Asaoka, Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups, J. Mod. Dyn. 9 (2015), 191–201. MR 3395267, DOI 10.3934/jmd.2015.9.191
- Danijela Damjanović, Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions, J. Mod. Dyn. 1 (2007), no. 4, 665–688. MR 2342703, DOI 10.3934/jmd.2007.1.665
- Danijela Damjanović and Anatole Katok, Local rigidity of partially hyperbolic actions I. KAM method and $\Bbb Z^k$ actions on the torus, Ann. of Math. (2) 172 (2010), no. 3, 1805–1858. MR 2726100, DOI 10.4007/annals.2010.172.1805
- Danijela Damjanović and Anatole Katok, Local rigidity of partially hyperbolic actions. II: The geometric method and restrictions of Weyl chamber flows on $SL(n,\Bbb R)/\Gamma$, Int. Math. Res. Not. IMRN 19 (2011), 4405–4430. MR 2838045, DOI 10.1093/imrn/rnq252
- Danijela Damjanovic and Anatole Katok, Local rigidity of homogeneous parabolic actions: I. A model case, J. Mod. Dyn. 5 (2011), no. 2, 203–235. MR 2820560, DOI 10.3934/jmd.2011.5.203
- Danijela Damjanović and James Tanis, Transversal local rigidity of discrete abelian actions on Heisenberg nilmanifolds, Ergodic Theory Dynam. Systems 42 (2022), no. 10, 3111–3151. MR 4476098, DOI 10.1017/etds.2021.79
- A. Katok and R. J. Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Tr. Mat. Inst. Steklova 216 (1997), no. Din. Sist. i Smezhnye Vopr., 292–319; English transl., Proc. Steklov Inst. Math. 1(216) (1997), 287–314. MR 1632177
- Laurent Clozel, Démonstration de la conjecture $\tau$, Invent. Math. 151 (2003), no. 2, 297–328 (French). MR 1953260, DOI 10.1007/s00222-002-0253-8
- Bassam Fayad and Raphaël Krikorian, Rigidity results for quasiperiodic $\textrm {SL}(2,\Bbb R)$-cocycles, J. Mod. Dyn. 3 (2009), no. 4, 497–510. MR 2587083, DOI 10.3934/jmd.2009.3.479
- Livio Flaminio and Giovanni Forni, Invariant distributions and time averages for horocycle flows, Duke Math. J. 119 (2003), no. 3, 465–526. MR 2003124, DOI 10.1215/S0012-7094-03-11932-8
- Livio Flaminio, Giovanni Forni, and James Tanis, Effective equidistribution of twisted horocycle flows and horocycle maps, Geom. Funct. Anal. 26 (2016), no. 5, 1359–1448. MR 3568034, DOI 10.1007/s00039-016-0385-4
- Roger Howe and Eng-Chye Tan, Nonabelian harmonic analysis, Universitext, Springer-Verlag, New York, 1992. Applications of $\textrm {SL}(2,\textbf {R})$. MR 1151617, DOI 10.1007/978-1-4613-9200-2
- A. Katok and R. J. Spatzier, Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions, Math. Res. Lett. 1 (1994), no. 2, 193–202. MR 1266758, DOI 10.4310/MRL.1994.v1.n2.a7
- A. I. Malcev, Commutative subalgebras of semi-simple Lie algebras, Amer. Math. Soc. Translation 1951 (1951), no. 40, 15. MR 39714
- F. I. Mautner, Unitary representations of locally compact groups. II, Ann. of Math. (2) 52 (1950), 528–556. MR 36763, DOI 10.2307/1969431
- David J. Mieczkowski, The cohomological equation and representation theory, ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)–The Pennsylvania State University. MR 2709154
- David Mieczkowski, The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory, J. Mod. Dyn. 1 (2007), no. 1, 61–92. MR 2261072, DOI 10.3934/jmd.2007.1.61
- D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math. 138 (1999), no. 3, 451–494. MR 1719827, DOI 10.1007/s002220050350
- S. Lang, $SL(2,\mathbb {R})$, Addison-Wesley, Reading, MA, 1975.
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- Edward Nelson, Analytic vectors, Ann. of Math. (2) 70 (1959), 572–615. MR 107176, DOI 10.2307/1970331
- Roe W. Goodman, One-parameter groups generated by operators in an enveloping algebra, J. Functional Analysis 6 (1970), 218–236. MR 268330, DOI 10.1016/0022-1236(70)90059-5
- Felipe A. Ramírez, Cocycles over higher-rank abelian actions on quotients of semisimple Lie groups, J. Mod. Dyn. 3 (2009), no. 3, 335–357. MR 2538472, DOI 10.3934/jmd.2009.3.335
- Derek W. Robinson, Elliptic operators and Lie groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1144020
- Yehuda Shalom, Explicit Kazhdan constants for representations of semisimple and arithmetic groups, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 3, 833–863 (English, with English and French summaries). MR 1779896, DOI 10.5802/aif.1775
- James Tanis and Zhenqi Jenny Wang, Cohomological equation and cocycle rigidity of discrete parabolic actions, Discrete Contin. Dyn. Syst. 39 (2019), no. 7, 3969–4000. MR 3960493, DOI 10.3934/dcds.2019160
- James Tanis and Zhenqi Jenny Wang, Cohomological equation and cocycle rigidity of discrete parabolic actions in some higher-rank Lie groups, J. Anal. Math. 142 (2020), no. 1, 125–191. MR 4205269, DOI 10.1007/s11854-020-0136-1
- Richard S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65–222. MR 656198, DOI 10.1090/S0273-0979-1982-15004-2
- David A. Vogan Jr., The unitary dual of $\textrm {GL}(n)$ over an Archimedean field, Invent. Math. 83 (1986), no. 3, 449–505. MR 827363, DOI 10.1007/BF01394418
- Kurt Vinhage, On the rigidity of Weyl chamber flows and Schur multipliers as topological groups, J. Mod. Dyn. 9 (2015), 25–49. MR 3395259, DOI 10.3934/jmd.2015.9.25
- Kurt Vinhage and Zhenqi Jenny Wang, Local rigidity of higher rank homogeneous abelian actions: a complete solution via the geometric method, Geom. Dedicata 200 (2019), 385–439. MR 3956203, DOI 10.1007/s10711-018-0379-5
- Zhenqi Jenny Wang, Local rigidity of partially hyperbolic actions, J. Mod. Dyn. 4 (2010), no. 2, 271–327. MR 2672298, DOI 10.3934/jmd.2010.4.271
- Zhenqi Jenny Wang, New cases of differentiable rigidity for partially hyperbolic actions: symplectic groups and resonance directions, J. Mod. Dyn. 4 (2010), no. 4, 585–608. MR 2753946, DOI 10.3934/jmd.2010.4.585
- Zhenqi Jenny Wang, Cohomological equation and cocycle rigidity of parabolic actions in some higher-rank Lie groups, Geom. Funct. Anal. 25 (2015), no. 6, 1956–2020. MR 3432162, DOI 10.1007/s00039-015-0351-6
- E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. I, Comm. Pure Appl. Math. 28 (1975), 91–140. MR 380867, DOI 10.1002/cpa.3160280104
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- Zhenqi Jenny Wang
- Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
- MR Author ID: 897165
- Email: wangzq@math.msu.edu
- Received by editor(s): March 11, 2022
- Received by editor(s) in revised form: August 15, 2022, August 15, 2022, February 6, 2023, January 8, 2024, April 15, 2024, July 10, 2024, October 21, 2024, October 23, 2024, January 16, 2025, and March 11, 2025
- Published electronically: April 9, 2025
- Additional Notes: This research was supported by NSF grants DMS-1700837 and DMS-1845416
- © Copyright 2025 American Mathematical Society
- Journal: J. Amer. Math. Soc.
- MSC (2020): Primary 37C15, 37C85, 37C05
- DOI: https://doi.org/10.1090/jams/1058