Flip theorem and the existence of minimal models for -folds
Author:
Shigefumi Mori
Journal:
J. Amer. Math. Soc. 1 (1988), 117-253
MSC:
Primary 14J30; Secondary 14E35
DOI:
https://doi.org/10.1090/S0894-0347-1988-0924704-X
MathSciNet review:
924704
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [A1] M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277–291. MR 232018, https://doi.org/10.1007/BF01389777
- [A2] M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23–58. MR 268188
- [B1] X. Benveniste, Sur l’anneau canonique de certaines variétés de dimension 3, Invent. Math. 73 (1983), no. 1, 157–164 (French). MR 707354, https://doi.org/10.1007/BF01393831
- [B2] X. Benveniste, Sur le cone des 1-cycles effectifs en dimension 3, Math. Ann. 272 (1985), no. 2, 257–265 (French). MR 796252, https://doi.org/10.1007/BF01450570
- [BS] Jürgen Bingener and Uwe Storch, Zur Berechnung der Divisorenklassengruppen kompletter lokaler Ringe, Nova Acta Leopoldina (N.F.) 52 (1981), no. 240, 7–63 (German). Leopoldina Symposium: Singularities (Thüringen, 1978). MR 642696
- [Da]
V. I. Danilov, Birational geometry of toric
-folds, Math. USSR-Izv. 21 (1983), 269-279.
- [El1] Renée Elkik, Singularités rationnelles et déformations, Invent. Math. 47 (1978), no. 2, 139–147 (French). MR 501926, https://doi.org/10.1007/BF01578068
- [El2] Renée Elkik, Rationalité des singularités canoniques, Invent. Math. 64 (1981), no. 1, 1–6 (French). MR 621766, https://doi.org/10.1007/BF01393930
- [Fl] Hubert Flenner, Rationale quasihomogene Singularitäten, Arch. Math. (Basel) 36 (1981), no. 1, 35–44 (German). MR 612234, https://doi.org/10.1007/BF01223666
- [Fr] P. Francia, Some remarks on minimal models. I, Compositio Math. 40 (1980), no. 3, 301–313. MR 571052
- [Ft] Takao Fujita, Zariski decomposition and canonical rings of elliptic threefolds, J. Math. Soc. Japan 38 (1986), no. 1, 19–37. MR 816221, https://doi.org/10.2969/jmsj/03810019
- [Go] Roger Godement, Topologie algébrique et théorie des faisceaux, Actualit’es Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg. No. 13, Hermann, Paris, 1958 (French). MR 0102797
- [Gra] Hans Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math. (2) 68 (1958), 460–472. MR 98847, https://doi.org/10.2307/1970257
- [GR] Hans Grauert and Oswald Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math. 11 (1970), 263–292 (German). MR 302938, https://doi.org/10.1007/BF01403182
- [Gro] A. Grothendieck, Eléments de géométrie algébrique. III, Inst. Hautes Études Sci. Publ. Math. 20 (1964).
- [H] H. Hironaka, On the theory of birational blowing-up, Thesis, Harvard Univ., 1960.
- [I] V. A. Iskovskih, Minimal models of rational surfaces over arbitrary fields, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 19–43, 237 (Russian). MR 525940
- [Ka1] Yujiro Kawamata, On the finiteness of generators of a pluricanonical ring for a 3-fold of general type, Amer. J. Math. 106 (1984), no. 6, 1503–1512. MR 765589, https://doi.org/10.2307/2374403
- [Ka2]
-, The crepant blowing-ups of
-dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. (to appear).
- [KMM] Yujiro Kawamata, Katsumi Matsuda, and Kenji Matsuki, Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 283–360. MR 946243, https://doi.org/10.2969/aspm/01010283
- [K1] Steven L. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. (2) 84 (1966), 293–344. MR 206009, https://doi.org/10.2307/1970447
- [Ko1] János Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 123 (1986), no. 1, 11–42. MR 825838, https://doi.org/10.2307/1971351
- [Ko2] -, The structure of algebraic threefolds--an introduction to Mori's program, Bull. Amer. Math. Soc. 17 (1987), 215-277.
- [Ko3] János Kollár, Flops, Nagoya Math. J. 113 (1989), 15–36. MR 986434, https://doi.org/10.1017/S0027763000001240
- [KSB] J. Kollár and N. Shepherd-Barron, Threefolds and deformation of surface singularities, Preprint.
- [Ku] Vik. S. Kulikov, Degenerations of 𝐾3 surfaces and Enriques surfaces, Uspehi Mat. Nauk 32 (1977), no. 3(195), 167–168 (Russian). MR 0506295
- [Ma] Ju. I. Manin, Rational surfaces over perfect fields, Inst. Hautes Études Sci. Publ. Math. 30 (1966), 55–113 (Russian, with English summary). MR 225780
- [Mn] Masayoshi Miyanishi, Projective degenerations of surfaces according to S. Tsunoda, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 415–447. MR 946246, https://doi.org/10.2969/aspm/01010415
- [My1] Yoichi Miyaoka, Deformations of a morphism along a foliation and applications, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 245–268. MR 927960
- [My2] Yoichi Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 449–476. MR 946247, https://doi.org/10.2969/aspm/01010449
- [My3] -, On the Kodaira dimension of Minimal Threefolds, Preprint.
- [MM] Yoichi Miyaoka and Shigefumi Mori, A numerical criterion for uniruledness, Ann. of Math. (2) 124 (1986), no. 1, 65–69. MR 847952, https://doi.org/10.2307/1971387
- [Mr1] Shigefumi Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593–606. MR 554387, https://doi.org/10.2307/1971241
- [Mr2] Shigefumi Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), no. 1, 133–176. MR 662120, https://doi.org/10.2307/2007050
- [Mr3] Shigefumi Mori, On 3-dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43–66. MR 792770, https://doi.org/10.1017/S0027763000021358
- [Mr4] Shigefumi Mori, Classification of higher-dimensional varieties, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 269–331. MR 927961
- [Mrr1] David R. Morrison, Semistable degenerations of Enriques’ and hyperelliptic surfaces, Duke Math. J. 48 (1981), no. 1, 197–249. MR 610184
- [Mrr2] David R. Morrison, A remark on: “On the plurigenera of minimal algebraic 3-folds with 𝐾\raise3.25pt∼≈\phantom{≈}0” [Math. Ann. 275 (1986), no. 4, 539–546; MR0859328 (88c:14049)] by Y. Kawamata, Math. Ann. 275 (1986), no. 4, 547–553. MR 859329, https://doi.org/10.1007/BF01459136
- [MS] David R. Morrison and Glenn Stevens, Terminal quotient singularities in dimensions three and four, Proc. Amer. Math. Soc. 90 (1984), no. 1, 15–20. MR 722406, https://doi.org/10.1090/S0002-9939-1984-0722406-4
- [N] Noboru Nakayama, Invariance of the plurigenera of algebraic varieties under minimal model conjectures, Topology 25 (1986), no. 2, 237–251. MR 837624, https://doi.org/10.1016/0040-9383(86)90042-X
- [PP] Ulf Persson and Henry Pinkham, Degeneration of surfaces with trivial canonical bundle, Ann. of Math. (2) 113 (1981), no. 1, 45–66. MR 604042, https://doi.org/10.2307/1971133
- [R1] Miles Reid, Minimal models of canonical 3-folds, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 131–180. MR 715649, https://doi.org/10.2969/aspm/00110131
- [R2] Miles Reid, Decomposition of toric morphisms, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 395–418. MR 717617
- [R3] Miles Reid, Tendencious survey of 3-folds, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 333–344. MR 927962
- [R4] -, Young person's guide to canonical singularities, Proc. Sympos. Pure Math. (Summer Research Inst., Bowdoin, 1985), Vol. 46 (1987), pp. 345-414.
- [SB] N. Shepherd-Barron, Some questions on singularities in 2 and 3 dimensions, Thesis, Univ. of Warwick, 1980.
- [Sh] V. V. Shokurov, A nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 3, 635–651 (Russian). MR 794958
- [T] Shuichiro Tsunoda, Degenerations of surfaces, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 755–764. MR 946256, https://doi.org/10.2969/aspm/01010755
- [Wa] Jonathan M. Wahl, Equisingular deformations of normal surface singularities. I, Ann. of Math. (2) 104 (1976), no. 2, 325–356. MR 422270, https://doi.org/10.2307/1971049
- [Wi] P. M. H. Wilson, Towards birational classification of algebraic varieties, Bull. London Math. Soc. 19 (1987), no. 1, 1–48. MR 865038, https://doi.org/10.1112/blms/19.1.1
Retrieve articles in Journal of the American Mathematical Society with MSC: 14J30, 14E35
Retrieve articles in all journals with MSC: 14J30, 14E35
Additional Information
DOI:
https://doi.org/10.1090/S0894-0347-1988-0924704-X
Article copyright:
© Copyright 1988
American Mathematical Society