Flip theorem and the existence of minimal models for $3$-folds
HTML articles powered by AMS MathViewer
- by Shigefumi Mori
- J. Amer. Math. Soc. 1 (1988), 117-253
- DOI: https://doi.org/10.1090/S0894-0347-1988-0924704-X
- PDF | Request permission
References
- M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277–291. MR 232018, DOI 10.1007/BF01389777
- M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23–58. MR 268188
- X. Benveniste, Sur l’anneau canonique de certaines variétés de dimension $3$, Invent. Math. 73 (1983), no. 1, 157–164 (French). MR 707354, DOI 10.1007/BF01393831
- X. Benveniste, Sur le cone des $1$-cycles effectifs en dimension $3$, Math. Ann. 272 (1985), no. 2, 257–265 (French). MR 796252, DOI 10.1007/BF01450570
- Jürgen Bingener and Uwe Storch, Zur Berechnung der Divisorenklassengruppen kompletter lokaler Ringe, Nova Acta Leopoldina (N.F.) 52 (1981), no. 240, 7–63 (German). Leopoldina Symposium: Singularities (Thüringen, 1978). MR 642696 V. I. Danilov, Birational geometry of toric $3$-folds, Math. USSR-Izv. 21 (1983), 269-279.
- Renée Elkik, Singularités rationnelles et déformations, Invent. Math. 47 (1978), no. 2, 139–147 (French). MR 501926, DOI 10.1007/BF01578068
- Renée Elkik, Rationalité des singularités canoniques, Invent. Math. 64 (1981), no. 1, 1–6 (French). MR 621766, DOI 10.1007/BF01393930
- Hubert Flenner, Rationale quasihomogene Singularitäten, Arch. Math. (Basel) 36 (1981), no. 1, 35–44 (German). MR 612234, DOI 10.1007/BF01223666
- P. Francia, Some remarks on minimal models. I, Compositio Math. 40 (1980), no. 3, 301–313. MR 571052
- Takao Fujita, Zariski decomposition and canonical rings of elliptic threefolds, J. Math. Soc. Japan 38 (1986), no. 1, 19–37. MR 816221, DOI 10.2969/jmsj/03810019
- Roger Godement, Topologie algébrique et théorie des faisceaux, Publ. Inst. Math. Univ. Strasbourg. No. 13, Hermann, Paris, 1958 (French). MR 0102797
- Hans Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math. (2) 68 (1958), 460–472. MR 98847, DOI 10.2307/1970257
- Hans Grauert and Oswald Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math. 11 (1970), 263–292 (German). MR 302938, DOI 10.1007/BF01403182 A. Grothendieck, Eléments de géométrie algébrique. III, Inst. Hautes Études Sci. Publ. Math. 20 (1964). H. Hironaka, On the theory of birational blowing-up, Thesis, Harvard Univ., 1960.
- V. A. Iskovskih, Minimal models of rational surfaces over arbitrary fields, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 19–43, 237 (Russian). MR 525940
- Yujiro Kawamata, On the finiteness of generators of a pluricanonical ring for a $3$-fold of general type, Amer. J. Math. 106 (1984), no. 6, 1503–1512. MR 765589, DOI 10.2307/2374403 —, The crepant blowing-ups of $3$-dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. (to appear).
- Yujiro Kawamata, Katsumi Matsuda, and Kenji Matsuki, Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 283–360. MR 946243, DOI 10.2969/aspm/01010283
- Steven L. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. (2) 84 (1966), 293–344. MR 206009, DOI 10.2307/1970447
- János Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 123 (1986), no. 1, 11–42. MR 825838, DOI 10.2307/1971351 —, The structure of algebraic threefolds—an introduction to Mori’s program, Bull. Amer. Math. Soc. 17 (1987), 215-277.
- János Kollár, Flops, Nagoya Math. J. 113 (1989), 15–36. MR 986434, DOI 10.1017/S0027763000001240 J. Kollár and N. Shepherd-Barron, Threefolds and deformation of surface singularities, Preprint.
- Vik. S. Kulikov, Degenerations of $K3$ surfaces and Enriques surfaces, Uspehi Mat. Nauk 32 (1977), no. 3(195), 167–168 (Russian). MR 0506295
- Ju. I. Manin, Rational surfaces over perfect fields, Inst. Hautes Études Sci. Publ. Math. 30 (1966), 55–113 (Russian, with English summary). MR 225780
- Masayoshi Miyanishi, Projective degenerations of surfaces according to S. Tsunoda, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 415–447. MR 946246, DOI 10.2969/aspm/01010415
- Yoichi Miyaoka, Deformations of a morphism along a foliation and applications, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 245–268. MR 927960, DOI 10.1090/pspum/046.1/927960
- Yoichi Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 449–476. MR 946247, DOI 10.2969/aspm/01010449 —, On the Kodaira dimension of Minimal Threefolds, Preprint.
- Yoichi Miyaoka and Shigefumi Mori, A numerical criterion for uniruledness, Ann. of Math. (2) 124 (1986), no. 1, 65–69. MR 847952, DOI 10.2307/1971387
- Shigefumi Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593–606. MR 554387, DOI 10.2307/1971241
- Shigefumi Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), no. 1, 133–176. MR 662120, DOI 10.2307/2007050
- Shigefumi Mori, On $3$-dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43–66. MR 792770, DOI 10.1017/S0027763000021358
- Shigefumi Mori, Classification of higher-dimensional varieties, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 269–331. MR 927961, DOI 10.1090/pspum/046.1/927961
- David R. Morrison, Semistable degenerations of Enriques’ and hyperelliptic surfaces, Duke Math. J. 48 (1981), no. 1, 197–249. MR 610184
- David R. Morrison, A remark on: “On the plurigenera of minimal algebraic $3$-folds with $K\rlap {\raise 3.25pt\hbox {$∼$}}\rlap {$≈$}\phantom {\approx } 0$” [Math. Ann. 275 (1986), no. 4, 539–546; MR0859328 (88c:14049)] by Y. Kawamata, Math. Ann. 275 (1986), no. 4, 547–553. MR 859329, DOI 10.1007/BF01459136
- David R. Morrison and Glenn Stevens, Terminal quotient singularities in dimensions three and four, Proc. Amer. Math. Soc. 90 (1984), no. 1, 15–20. MR 722406, DOI 10.1090/S0002-9939-1984-0722406-4
- Noboru Nakayama, Invariance of the plurigenera of algebraic varieties under minimal model conjectures, Topology 25 (1986), no. 2, 237–251. MR 837624, DOI 10.1016/0040-9383(86)90042-X
- Ulf Persson and Henry Pinkham, Degeneration of surfaces with trivial canonical bundle, Ann. of Math. (2) 113 (1981), no. 1, 45–66. MR 604042, DOI 10.2307/1971133
- Miles Reid, Minimal models of canonical $3$-folds, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 131–180. MR 715649, DOI 10.2969/aspm/00110131
- Miles Reid, Decomposition of toric morphisms, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 395–418. MR 717617
- Miles Reid, Tendencious survey of $3$-folds, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 333–344. MR 927962, DOI 10.1090/pspum/046.1/927962 —, Young person’s guide to canonical singularities, Proc. Sympos. Pure Math. (Summer Research Inst., Bowdoin, 1985), Vol. 46 (1987), pp. 345-414. N. Shepherd-Barron, Some questions on singularities in 2 and 3 dimensions, Thesis, Univ. of Warwick, 1980.
- V. V. Shokurov, A nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 3, 635–651 (Russian). MR 794958
- Shuichiro Tsunoda, Degenerations of surfaces, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 755–764. MR 946256, DOI 10.2969/aspm/01010755
- Jonathan M. Wahl, Equisingular deformations of normal surface singularities. I, Ann. of Math. (2) 104 (1976), no. 2, 325–356. MR 422270, DOI 10.2307/1971049
- P. M. H. Wilson, Towards birational classification of algebraic varieties, Bull. London Math. Soc. 19 (1987), no. 1, 1–48. MR 865038, DOI 10.1112/blms/19.1.1
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: J. Amer. Math. Soc. 1 (1988), 117-253
- MSC: Primary 14J30; Secondary 14E35
- DOI: https://doi.org/10.1090/S0894-0347-1988-0924704-X
- MathSciNet review: 924704