
JOURNAL OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume I, Number I, January 1988 

p-ADIC HODGE THEORY 

GERD FALTINGS 

1. INTRODUCTION 

(a) We intend to describe a relationship between p-adic etale cohomology and 
Hodge cohomology for smooth algebraic varieties over a p-adic field K . The 
results are similar to classical Hodge theory over the complex numbers with Betti 
cohomology replaced by etale cohomology; however, there are some differences. 
For example, the Hodge filtration goes the other way. While in the classical case 
a holomorphic differential form defines a class in singular cohomology, giving an 
injection of the space of differentials into the cohomology group, in the p-adic 
case there is a surjection from cohomology to differentials. Also we are missing 
the Z-structure on singular cohomology and the Gauss-Manin connection for 
families. 

(b) Let us describe our results. Denote by V a complete discrete valuation 
ring of unequal characteristic with perfect residue field k of characteristic p 
and K its field of fractions. If X is a smooth proper K -scheme, there is a 
natural isomorphism (Chapter III, Theorem 4.1) 

H n (X®K.Zp) ®K~ == E9 Ha(x.n~/K)®K~(-b). 
K Zp a+b=n K 

Here the cohomology on the left is etale cohomology, "~,, denotes the p-adic 
completion, " (-b) " Tate twist, and the isomorphism is Gal(K / K)-equivariant. 
There is also a version with derived categories, or for open varieties which 
are the complement of a divisor with normal crossings in a complete X as 
above. Using corollaries one may derive algebraic proofs of degeneration of the 
Hodge spectral sequence and of Kodaira's vanishing theorem. However, there 
are better ways to do this using crystalline cohomology and Frobenius. 

(c) If X extends to a smooth proper scheme over V, we have stronger 
statements. To describe them we need some notation. Denote by V the integral 
closure of V in K, and by m its maximal ideal. V is a valuation ring with 
nondiscrete value group Q, so m behaves differently from what we are used 
to. For example, m = m 2 • An almost isomorphism of V -modules is a map 
whose kernel and cokernel are annihilated by m. 
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We shall define an intermediate cohomology theory ,2"* (X) with a map 
Hn(X(FhK,Zp)®zp V~ -+ ,2"* (X) , which turns out to be an almost iso-
morphism. 

On the other hand ,2"* (X) is closely related to Hodge cohomology. 
-In the sense of derived categories, it has a filtration with quotients isomor-

phic to HQ(X, n~/K) ®K V~(-b) up to p-torsion of exponent pl/(P-l) • 

-There exists a natural transformation (§II, Theorem 3.1) 

E9 HQ(X ,n~/v) ®/V~(-b) -+ ,2"n(X) , 
Q+b=n V 

where p E V is a certain element related to the ramification of V over the 
Witt ring W(k). If V is unramified (that is, p is a uniformizing element for 
V), its p-valuation is I/(p - I). This transformation has an almost defined 
. n lDverse up to p . 

There are also versions for open varieties, or derived categories, etc. 
(d) The method of proof follows ideas developed by J. Tate and J. M. Fon-

taine [Fo, T]. Basically etale cohomology is a global version of Galois cohomol-
ogy. To study the latter we look at etale coverings of the generic fiber X ®v K 
and the normalizations of X in it. In general these are not etale over X as can 
be seen by the example of adjoining p-power roots of units. However, we show 
that'this example is very typical of what is happening, in the sense that after 
adjoining enough such roots the remaining ramification can be controlled. This 
means in the case of good reduction that the rest is almost unramified, while 
for bad reduction the ramification is controlled by some finite fixed power pe . 
After this we define ,2"* (X) as Galois cohomology of the p-adic completion of 
normalization of &x in the maximal extension of the type described above. Our 
methods allow us to handle this infinite extension, and a study of differentials 
gives us the natural transformation relating it to Hodge cohomology. 

(e) The paper is organized as follows. In §I we study the case of good re-
duction and prove the necessary results from commutative algebra. Loosely 
speaking, we redo the classical theory of etale coverings (SGA 1,2) in the con-
text of "almost-mathematics, " where the results hold only up to m-torsion. One 
of the main difficulties is that we cannot use the usual finiteness results we are 
accostumed to. For the commutative algebra involved the reader might study 
[M]. 

In §II we construct the theory ,2"* (X). Here we need some simplicial meth-
ods for which [Fr] is a good reference. Besides this the proofs are standard 
applications of the machinery. Let us remark that we often have to refer to 
statements in the derived category. This means that we do not consider only 
cohomology groups but also the complexes which compute them. As those are 
naturally given by our constructions, this poses no problem. 

Finally in §III we treat the case of bad reduction. Instead of working modulo 
m-torsion we formulate statements modulo a bounded p-power. The basic 
difficulty lies in showing the necessary facts from commutative algebra. We use 



p-ADIC HODGE THEORY 257 

a semiglobal method_ Locally, schemes are elementary fibrations over a base of 
lower dimension, and these elementary fibrations are pullbacks from spaces with 
good reduction. We already know how to treat those, and the base is handled 
by induction. However, this method forces us to introduce some ideas (mainly 
due to M. Raynaud) from the theory of rigid spaces. We do not formulate them 
in this language, but the reader should know where they came from. 

(f) Related results have been obtained in papers by S. Bloch and K. Kato, 
and by J. M. Fontaine and W. Messing. Both work only for good reduction, 
and the former assumes that the schemes involved are ordinary. However, the 
results of Fontaine and Messing are stronger than ours (in case they apply), as 
they give a rule for how to relate etale cohomology and crystalline cohomology. 
Our methods can be used to simplify some of their proofs, but it is too early to 
report about this now. 

I thank the referee for pointing out some inaccuracies. The work was partially 
supported by NSF grant DMS-8502316. 

I 
1. Ramification theory for discrete valuation rings. 

(a) We work with discrete valuation rings V whose fraction fields K have 
characteristic zero while the residue fields k = J'l'm (m = maximal ideal) have 
positive characteristic p. The valuations v: K* -+ Q will be normalized such 
that v(p) = 1. If Q E v(K*) we denote by pay the ideal of V generated by an 
element of valuation Q. Furthermore, we will assume that [k: e] = pd < 00 . 

Let us also remark that all such V are excellent rings. This allows us to pass over 
to completions if needed. So we shall formulate our results for complete rings 
but use them sometimes also in a noncomplete case, where, however, passing 
over to completions poses no problem. So from now on let us assume that V is 
complete. By 0v we understand the universal finite V -module of differentials. 
0v is finitely generated over V, and there exists a derivation d: V -+ 0v 
which is universal for derivations into finitely generated V -modules. It is easy to 
see that such an 0v exists, and in fact it can be generated by ::; d + 1 elements. 
This follows from the familiar exact sequence m/m2 -+ 0v ®v k -+ Ok -+ O. 

If W is the normalization of V in a finite extension L of K, W is a local 
ring. The inverse different p -15 W c L is the maximal fractional ideal which is 
mapped into V by the trace tr L K. If W is generated by a single element w, 
with minimal equation f(w) = d, t5 is equal to the valuation of the derivative 
/(w). t5 is additive for extensions. Assume U eVe W, then the different 
of W over U is the sum of the differents of W over V and of V over U. 
We also have the following lemma. 

1.1. Lemma. For any extension V c W, as above, the natural map 0v ®v W 
-+ Ow is injective, and its cokernel 0JJ'lv has the same length as W;' pJ W . 

Proof. We may assume that L is a Galois extension of K and then reduce 
to the case of a totally ramified extension of prime degree. In this case W 
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can be generated by one element w, so W ~ V[T]/ f(T). Hence Ow is the 
quotient of 0v ®v WEe WdT under the submodule generated by the derivative 
of f( T). This element has second component !' (w )dT , and as !' (w) is a 
nonzero-divisor in W the assertion follows. 0 

(b) One of the basic facts in our theory is the following. One very ramified 
extension kills all ramification. To be more precise, assume that we have given 
a family of extensions V = Va c V; c V; c ... , such that 0VnJVn_l has 
(v,,/pv,,)d+1 as quotient. 

1.2. Theorem. If V c W is any extension and ~ denotes the normalization 
of the tensor product Vn ®v W, then the differents d(Wn/v,,) of Wn over v" 
(or more precisely of each factor of the semi/oeal ring Wn) converge to 0 for 
n-+oo. 

Proof. Replacing V by some v" we may assume that all ~ are integral 
domains. Look at the sequence of maps 0WnlVn ®wn Wn+1 -+ 0Wn+I/Vn -+ 
Ow. IV. . The kernel of the second map contains 0V. IV. ®v. Wn+1 ' n+l n+l n+l n n+l 

which has (Wn+l/pwn+l)d+1 as quotient. As 0Wn+I/Vn is the direct sum of 
d + 1 modules of the form Wn+ 1/ pa Wn+ I ' the kernel of the second map contains 
the kernel of multiplication by p on Ow. lV.' and hence the composition 

n+l n 

of the two maps annihilates the kernel by p-multiplication on 0WnJVn ®wn 
Wn+I ' If we denote the different of ~ over v" by dn , this kernel has length 
at least equal to that of Wn+l/ pP Wn+1 ' where P = min{ 1, dn/(d+l)} . Also it is 
clear that in -t5n+ 1 annihilates Wn+ 1/ (Wn ® Vn v,,+ I) , and so the cokernel of the 
composition of the two maps is annihilated by i n - t5n + 1 • So its length is at most 
equal to that of Wn+1 divided by the (d + l)st power of this. We derive that 
dn-dn+1 ~ P-(d+l)(dn-dn+I). So if dn ~ d+l, then dn+1 :5 dn-l/(d+2) , and 
otherwise dn+1 :5 (l-l/(d + l)(d +2))dn . In any case dn -+ 0 for n -+ 00. 0 

A typical example of how we can obtain a sequence of v" 's as above goes 
as follows. Suppose V is the completion of W(k)(TI' ... , Td), where W(k) 
denotes the Witt vectors associated to a perfect field k. Let v" denote the 
extension of V generated by the pnth roots of the T; 's together with the pn+1 st 
roots of unity. In more general situations V is usually a finite extension of a 
ring as above, and we can use the induced sequence of extensions. 

(c) If we have a sequence of Vn's as above, let V 00 denote their union. This 
is a subring of V, the integral closure of V in the algebraic closure K in K. 
V is almost unramified over Voo ' as explained below. 

2. Almost unramified extensions. 
(a) We want to generalize some results about etale extensions to the case of 

almost unramified extensions. For this we always work over a normal base ring 
in which p is of the form p = (unit) . xn for an infinite number of n's. We 
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write x = pl/n , which is well defined up to units. As we will be interested only 
in the ideal generated by x , this causes no problem. If a E Q satisfies n· a E Z 
for some n as above, we also define pOI as the obvious element, unique up to 
units. We assume that multiplication by p is injective in all our rings. By m 
we denote the ideal generated by all powers of pt , 8 > 0 . 

2.1. Definition. Suppose A is a ring, B an A-algebra. B is called an almost 
etale covering of A if 

(i) B[ljp] is a projective A[ljp]-module of finite rank and an etale 
A [ 1 j p ]-algebra. 

(ii) the trace map tr B/A: B[lj p] -+ A[lj p] maps B into A. 
(iii) Let eB/A E (B®AB)[ljp] denote the idempotent which corresponds to 

the (open) image of the closed diagonal immersion given on the level 
of rings by (B®AB)[ljp]-+B[ljp]. Then for any 8>0, pteB/A is 
in the image of B®A B. 

Remarks. (i) If B is almost etale over A and C almost etale over B, this 
holds also for C over A. 

(ii) If B is almost etale over A, so is its subalgebra A + mB . 
(iii) Suppose B is almost etale over A. For some 8 > 0, choose elements 

x;,Y; E B such that p£. eB/ A = Ex; ® Y;. Then for any b E B, p£. b = 
EtrB A (bx;) . Y;. It follows that, up to the factor p£, B is a direct summand 
in a ;{.ee A-module. Consequently B is almost projective and almost flat over 
A, which means that m annihilates Tor1(B, M) and Ext~(B, M) for i > 0 
and any A-module M. 

(iv) We also can define almost etale extensions without assuming them to be 
finite. It is necessary that the extension be etale after inversion of p and that 
condition (iii) hold. However, there are some difficulties in proving the main 
results below in this context. 

(v) If M is a B ® A B-module, define the Hochschild cohomology 
H*(BjA,M) as cohomology of the usual complex. In degree n we have 
B®A B-homomorphisms B®A B®A" '®A B®A B -+ M (n+2 factors B), 
and the derivative is induced by the alternating sum of partial multiplications. 
(For example bo®b l ®b2 maps to bobl®b2-bo®blb2,and HI(BjA.M) isgiven 
by derivations B -+ M modulo inner derivations). If eB/ A = EX;®Yj were an 
element of B ® A B we would obtain a null-homotopy by bo ® bl ® ... ® bn+1 -+ 

EXj ® yjbO ® bl ® ... ® bn+1 ' and so Hochschild cohomology would vanish. 
The same argument gives that for B almost etale over A m annihilates the 
Hochschild cohomology in positive degrees. 

(b) We want to generalize the usual results of lifting over nilpotent ideals. 
This can be done provided we assume from the beginning that B = A +mB . Let 
us also remind the reader that we assumed that multiplication by p is injective 
in all rings involved. Thus the induction step where one usually replaces a 
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nilpotent ideal IcC by 1112 c CII2 , and so on, has to be modified. Divide 
CII2 by its p-torsion, etc. 

2.2. Theorem. Suppose B = A + mB is an almost etale covering of A, C an 
A-algebra, IcC a nilpotent ideal, and <p: B --t CI I an A-algebra morphism. 
Then <P lifts uniquely to B --t C . 

Proof. We may assume that 12 = O. As B is almost A-projective, for any 
e > 0 we can lift pe<p to an A-module map <Pe: B --t C. 

bo(pe<pe(blb2) - <pe(bl )<pe(b2))b3 E I 

defines a class in H2(BIA, I) , which is annihilated by m. Doubling e and 
then enlarging it a little we may assume that this class vanishes, and then we 
can modify <Pe so that it becomes multiplicative, i.e. such that pe<pe(xy) = 
<pe(x)<pe(Y). Such a lifting is unique up to HI (BIA, I), hence up to p-torsion. 
As C has no such torsion, the different <Pe glue together to give a multiplicative 
A-linear map <Po: mB --t C. We can extend to B = A + mB , because <Po maps 
pe to an element x = pe + y (y E I) satisfying x 2 = pe X , hence pe y = O. 
Uniqueness has already been established. 0 

2.3. Theorem. Suppose I c A is a nilpotent ideal, B an almost etale covering 
of A = AI I, B = A + mB. Then there exists an almost etale covering B of A 
such that B == B ® A AI (p-torsion ). 

Proof. We may assume that 12 = O. The proof proceeds similarly as before. 
We start with a small e, which we enlarge at each step by a certain factor. First 
B is a direct summand in a free module A' up to some pe. That is, there 
exists an r x r matrix e such that 

e 2 = pee and B = A'l(pe - e)(A') modulo p-torsion. 

Tripling e we may assume that e lifts to an r x r matrix e with e2 = pee. Let 
Be = A' I(pe -e)(A') . Then Be is A-projective up to pe , that is, pe annihilates 
I--all higher Ext-groups ExtA(Be, M). Furthermore, B contains Be ® A AI(p-

torsion), the quotient being annihilated by pe. Let m: B ® A B --t B denote 
the multiplication map. p3e m lifts to me: Be ® A Be --t Be' The obstruction to 
me being associative, is given by 

bo[me(bl ,me(b2, b3)) - me(me(bl , b2), b3)]b4 E Kem(Be --t B) 

and defines a class in H 3(BIA) with values in this module. (That we get a 
cycle amounts to a five-term identity well known in the study of associativity.) It 
follows that we can modify p4e me such that the associative law holds. Changing 
e we may assume that this is already true for me' Again the lifting is unique 
up to p-torsion, hence unique. It also follows that the product is commutative, 
as the commutator with a fixed element of Be is a derivation. 
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Now each B,JI/p] is a lifting of the etale A[l/p]-algebra B[l/p] and is 
a projective A[l/p]-module. It follows that all Be[l/p] are isomorphic to a 
fixed algebra B[l/p] (say), and we may imbed Be into B[l/p] such that me 
corresponds to p3e.product in B[l/p] (use p3e.standard imbedding). Choose 
a 0 ~ e. Then the map Be -+ B[l/p] -+ B[I/p]/p-36 B6 induces a derivation 
B -+ I-torsion in B[I/p]/p-36 B6 . By Hochschild cohomology (this time we 
use HI) the image is annihilated by m. Hence Be C p-46 B6 • Consider the 
subalgebras Ce = A+pSe Be C B[l/ p]. If 0 ~ e/2 then Ce C C6 . The image of 
Ce in B contains p6e.B.ltfollowsthat pI3e' eB/A lies in Ce®ACe,hence 
p27e . e B/A lifts to an idempotent in Ce ® A Ce . If we choose a sequence en 
with en+1 ~ en/2, the correspondings Ce's form an increasing sequence. If B 
denotes their union, B®A B contains meB/A, hence B is the required lifting 
of B. 0 

(c) We can also prove the usual results about cohomology and differentials. 

2.4. Theorem. Suppose B is an almost etale covering of A. 
(i) The map n A ® A B -+ n B is an almost isomorphism, that is, its kernel 

and cokernel are annihilated by m. 
(ii) Suppose a finite group G operates on B, such that B[l/ p] is a Galois 

covering of A[l/p] with group G. If M is any B-module with a semilinear 
G-action, then m annihilates all higher cohomology Hi (G , M), i > O. The 
same holds for MG /trG(M). 
Proof. For (i) we have to show that for any B-module M (which is allowed 
to have p-torsion contrary to our general assumptions), the restriction maps on 
derivations Der(B, M) -+ Der(A, M) is an almost isomorphism. This follows 
in the usual way using Hochschild cohomology H* (B / A, M) . 

For (ii), it suffices to show that m annihilates A/trB/A(B). We may assume 
that A = BG . Denote the A-ideal tr B/A (B) by a. We show that aB ::J mB . Ap-
ply the norm NB/A to elements of both sides to derive the conclusion. However, 
if pe.eB/A = Exi®yi , then pe = EtrB/A(xi)yi , hence everything follows. 0 

(d) Let us give some examples of almost etale coverings. First consider a 
discrete valuation ring V satisfying the assumptions of the first part and an 
increasing sequence ~ of finite extensions which kill ramification. Let V 00 

denote their union. If W is another finite extension of V, Wn the composite 
of Wand Vn ' and p6n the different of Wn over Vn ' it follows that in makes 
ewn /vn integral. As the on converge to 0 for n -+ 00, it follows that the union 
Woo of the Wn is almost etale over V 00' We derive that for any finite extension 
of the fraction field of V 00 the normalization of V 00 in this field is almost etale 
over it. 

Another important example arises as follows. Suppose A is a normal integral 
domain with fraction field K of characteristic 0 such that A = A p + pA (modulo 
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p, Frobenius is surjective). If U E A* is a unit and B denotes the normalization 
of A in K(u l / P ) , then B is an almost etale covering of A. For the proof 
observe first that B[l/p] is already etale over A[l/p]. So we may assume that 
A is local with p contained in the maximal ideal. For any 0: < I I (p - I) we 
can find x = Xo E A such that u - x P is divisible by ppo: Assume this holds 
for some 0: (0: = lip works by assumption), and let p::; (0:+ 1)lp. Dividing 
u by x/ (which is a unit) we may assume that u = 1+ pPOy with YEA. If 
y - zP is divisible by p, x = 1 + pO z works for p. Repeating this induction 
step we reach any exponent < I/(p - 1). If v = ul / p E B, it follows that 
va = (v -xo)1 pO is an element of B. It generates a subring whose discriminant 
over A is pP-(P-I)o. Hence this p-power makes eB/ A integral, and by letting 
0: approach 1 I (p - 1) we reach the conclusion. Let us also note that B satisfies 
the same assumptions as A, that is, B = B P + pB. Calculating mod p we see 
that for 0: close to l/(p-l) the subring A[v/] has discriminant pp(P-(P-I)o) . 
It follows (by expanding in an A-basis of A[vo P]) that after multiplication with 
this power of p any element of B becomes a pth power mod pB. But for 
small e > 0, bP E ppe B implies b E pll B . It follows that any element of B is 
a p-power modulo pl-pe and then also modulo p. 

Hence we can make induction arguments. For example, if B is the normal-
ization of A in any extension of K which is generated by p-power roots of 
units in A, then B is almost etale over A. 

3. Good reduction. 
(a) Our basic setup is as follows. V is a discrete valuation ring whose frac-

tion field K has characteristic 0 and whose residue field k is perfect of pos-
itive characteristic. R is a smooth V -algebra or a localization of such or a 
henselization. We consider normal R-algebras S which are etale over R in 
characteristic 0, that is, S[ 1 I p] is etale over R[ 1 I p]. If R is integral they 
are classified by the fundamental group 111 (Spec(R[l1 pm, which is the Galois 
group of the largest algebraic extension of the quotient field of R for which 
the normalization of R[11 p] in it is unramified. Examples of S are obtained 
by taking p-power roots out of units of R, by etale coverings of R, and by 
rings of the form S = R ®v ~ ,where ~ is the normalization of V in a finite 
extension of K. We want to show that these are the typical examples. 

We choose an increasing sequence of extensions ~ of V which kills ramifi-
cation (Theorem 1.2). Furthermore we assume that we are given units u1 ' ••• , 

ud E R* such that the corresponding mapping V[T/1 , T/ 1 , ••• ,Td ±I] --+ R 
is etale. We let Rn denote the normalization of R ®v ~ in the extension 
generated by the pnth roots of the ui • It is clear that 

'" 1<>1 pR Rn = (R '01 ~)[XI ' ... ,Xd]/(Xi - u i )· 
v 

Let Roo denote the union of the Rn' 
(b) Our main result is the following. 
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3.1. Theorem. Suppose S is a normal finite R -algebra such that S[1 / p] is 
etale over R[1/ p]. Let Soo denote the normalization of S ®R Roo' Then Soo 
is an almost etale covering of Roo . 

Proof. We reduce to the case that R is the henselization of a smooth V -algebra. 
We use induction over dim(R). If this dimension is 1, R is a discrete valua-
tion ring whose residue field is a finite extension of k of transcendence degree 
d . As QRn/ R ~ Q Vn / V ®vn Rn ED (Rn/ pn Rn)d , the sequence Rn kills ramifica-
tion (complete and use part 1, Theorem 1.2), and the assertion follows. 

If the dimension is 2, we denote by Sn the normalization of S ®R Rn' Sn 
is a finite reflexive Rn-module, and as Rn is regular Sn is a free Rn-module. 
Denote the prime divisors of p in R by {p l' ... ,p r}' This is a finite set of 
height one prime ideals. If p is one of them, we may apply induction to the 
localization in p. It follows that there exists a sequence ~n - 0 such that 
p6n • eSn / Rn is in (Sn ®Rn Sn)p . We may choose this sequence uniform for all 
p, and as (Sn ®Rn Sn) = np(Sn ®Rn Sn)p n (Sn ®Rn Sn)[l/p] , it follows that 
p6n • eSn / Rn is actually in (Sn ®Rn Sn) . 

(c) So let us assume that dim(R) ~ 3. The residue field of R is a separable 
extension of k, and some subset ofthe u j ' say {u 1 ' ... ,us}, forms a separating 
transcendence base for this extension. Let W = V(Tl' ... ,~) (the localization 
of the polynomial ring in the extension ofthe maximal ideal of V). W maps to 
R (sending 1'; to uj ), and R is also etale over W. Let R, respectively W, 
denote the extension obtained by adjoining p-power roots of {u1 ' ••• ,us}, 
Then W is a discrete valuation ring with perfect residue field, and we may 
replace the pair (R, V) by (R, W). SO we may assume that the residue field of 
R is finite over k . As R was supposed to be henselian, we now replace V by an 
unramified extension, so that R has residue field k , and R is isomorphic to the 
henselization of g'm d in a k-rational point, the u j being given by the canonical 
units on g'm d. We may also suppose that k is algebraically closed (use an 
unramified extension of V). It follows that R = V{t" ... ,td } (henselization 
of the polynomial-ring), with u j = vj+tj , Vj E V* . Now S is the normalization 
of R in a finite extension of its fraction field, unramified in characteristic 0, 
and we denote by S n the normalization of S ® R Rn , and S 00 is the union 
of the Sn' There exists a sequence ~n - 0, such that for each prime divisor 
peR of p the idempotent eSn / Rn becomes integral in the p-Iocalization after 
mUltiplication with in. It follows that the dual of Sn (for the trace form 
trSn/Rn) is contained in p-6n • Sn' and one derives that in annihilates the 
cokemelof Sn ®Rn Roo - Soo' 

Let n denote the maximal ideal of R, and consider local cohomology 
Hn *(.). As dim(R) ~ 3, H/(Sn) is a finite R-module, and we also know 
that Hn o(Sn) and Hn 1 (Sn) vanish. It follows that some power of n (depend-
ing on n) annihilates in . Hn 2 (Soo) . 



264 GERD FALTINGS 

(d) We now apply induction to R = RltdR and the sequence of units 
u1 ' ••• ,Ud_1 in it. Note that the surjection R -4 R has a section (send td 
to 0), so we can view R as a subring of R. Abbreviate t = td' If 8 ~enotes 
the normalization of SitS, we derive that the corresponding sequence Sn con-
verges to an almost etale covering 800 of Roo' Let An = R ®'R Rn denote the 
extension obtained by adjoining pnth roots of u,' ... 'Ud_ I ' Bn = R ®'R 8n , 
and Aoo ' respectively Boo' are the union of the An' respectively Bn' So 
Boo is almost etale over Aoo' Finally let Cn = Roo ®'Rn Rn' (This is nor-
mal. It is obtained from Aoo by adjoining the pnth root of ud.L Dn =:: nor-
malization of S®R Cn . That is, An C Bn is obtained from Rn C Sn via 
base extension R c R, and (up to normalization) Cn C Dn from Rn C Sn 
via Rn C Roo' Also Coo = Roo and Doo = Soo' We claim that the map 
S ®R Cn -48 ®R Cn -4 (Boo ®A oo Cn)lt(Boo ®A oo Cn) extends to Dn' This is 
clear after inverting p. On the other hand the trace form tr B=/A= induces an 
isomorphism of Boo with its dual (as Aoo -module). It follows that an element 
of (BOO®A= CnH1lp] is integral if the trace relative Cn of its product with 
any element of B lOlA C is integral. The same holds after division by t. 

00 \C::I 00 n 
So we come down to checking that the trace relative Cn takes integral values 
on Boo ®A= Dn' But this is obvious, as Cn is integrally closed. 

Letting n -4 00 we obtain a regular map 

SooltSoo -4 Boo ®Roolt(Boo ®Roo)' 

If we localize in a prime q =f. n of R, both Sand B ®A R are al-oe 00 00 00 

most unramified over Roo' Hence the morphism above is an almost isomor-
phism and extends over Rooltm Roo for any m > 0, provided we replace 
Soo by Roo + mSoo (m = maximal ideal in Voo = union of the Vn). As 
H;(Roo ®A= Booltm(Roo ®A oo Boo)) = (0), we obtain a compatible system of 
liftings Roo +mSoo -4 Boo ®A= Rooltm(Boo ®A= Roo)' whose cokernels consist 
of n-torsion up to terms annihilated by m . If we neglect such terms their coker-
nels are isomorphic to the kernels of multiplication with t m on H2 n (S 00) with 
the transition maps (for m' > m) given by multiplication by tm'-m. As we 
know, up to terms annihilated by pan, H2 (S ) is equal to Soo ®R H2 (Sn) nOOn n 
on which t-multiplication is nilpotent; we derive that all the cokernels are an-
nihilated by any in , hence by m. 

(e) As R ®A B is almost flat over R , we have that for each m 
00 00 00 00 

SooltmSoo is almost flat over RooltmRoo' As in annihilates the cokernel 
of the injection Sn ®R R -4 S , we derive that m· in annihilates all 

n 00 00 

Tor~= (Sn ® Rn Roo' M), i > 0 and M any Roo -module annihilated by some 
power of t. Since Roo is faithfully flat over Rn' in also annihilates all 
Tor~n(Sn' M), i > 0 and Many Rn-module annihilated by a power of 
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t. As Rn is local and noetherian we derive that this holds in fact for any 
Rn-module M. Letting n -+ 00 we derive that Soo is almost flat over Roo . 

Finally, by induction we already know that for any e > 0 pl!. eSoo /Roo is 
integral in S ®R S up to n-torsion. Almost flatness implies that essentially 

00 00 00 

there is no such n-torsion, hence the theorem follows. 0 

(f) There is a version for complements of divisors with normal crossings. 
In this case we start with a smooth V -algebra R as before together with a 
set of u j E R such that the induced morphism V[T ••...• Td ] -+ R is etale. 
The u j do not have to be units. We consider normal R-algebras S such that 
S[I/(pu • ... ud )) is etale over R[1/(pu • ... ud )]. As standard examples we use 
the extensions Rn generated by v" and the roots of the u j of order n! (there 
are many other choices for the sequence of exponents). Their union Roo is the 
tensorproduct(over V[T ...... Td )) of R with Voo[TjQ+] (allpositiverational 
exponents are allowed for the Tj ). It follows that modulo p any element of 
Roo is a p-power. 

The reason why we do not restrict to p-power roots is Abhyankhar's lemma 
(see SGA I). If S is a finite normal R-algebra, etale after inverting pu • ... ud ' 

the normalization Sn of S ®R Rn is etale over Rn after inverting only p, 
provided n is big enough. 

We derive the following. 

3.2. Theorem. Suppose S is a finite normal torsion free R-algebra such that 
S[I/(pu • ... ud )) is etale over R[1/(pu • ... ud )). If Sn denotes the normaliza-
tion of S ® R Rn and Soothe union of all S n' then S 00 is almost etale over 
Roo' 
Proof. We may assume that R is local and henselian and also that S is already 
etale after inverting p (replace R by some Rn)' We know that S becomes 
almost etale if we adjoin sufficiently many p-power roots of units in R. It 
follows that for any e > 0 we can find an extension A of R, obtained by 
adjoining finitely many p-power roots of units such that for the normalization 
B of S ®R A the element pl!. eB/ A is integral. Let An' Bn denote the nor-
malizations of A®RRn and B®RRn' and Aoo and Boo their union. Then 
Aoo is almost etale over Roo' and Roo is almost a direct summand in it (the 
image of the trace form contains mRoo)' It follows that Boo is almost isomor-
phic to Soo ®Roo Aoo as this is almost etale over Soo' So enlarging e a little 
we see that pl!. eSoo /Roo becomes integral after ®Roo Aoo' As Roo is almost a 
direct summand in Aoo ' this already holds before tensoring. The assertion now 
follows as e can be arbitrari.1y small. 0 

4. Differentials and cohomology. 
(a) Let R, V be as before. We especially assume that R has units u j with 

the properties specified above. Furthermore, we assume that V is integrally 
closed in R. Denote by V the integral closure of V in an algebraic closure 
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K of K. Then R ®v V is a normal domain. We denote by R the integral 
closure of R in the maximal algebraic extension unramified in characteristic 
o of the fraction field of this domain. We have seen that R is an inductive 
limit of almost etale coverings of Roo' This allows us to transfer properties 
from Roo to R. Note that R does not depend on the choice of the u j • 

Let r denote the Galois group of Rover Rand .1 c r the kernel of the 
natural surjection r -+ Gal(K / K). If R is only integral but V is not integrally 
closed in R, its integral closure J-; in R is a finite etale extension of V. 
J-; is the normalization of V in the extension KI of K determined by the 
image of r -+ Gal(K/K). This image operates on all objects, and we can 
form the induced Gal(K / K)-module. This procedure allows us to weaken the 
general hypotheses "geometrically irreducible" to "irreducible," in the rest of 
this chapter. We leave the details to the reader. 

(b) We first consider differentials. It is known (see [Fo] or use part 1 above) 
that aViv ~ K/p-IV(l), the isomorphism being induced from dlog: f.lpoo -+ 

0Vlv' Here (1) denotes Tate twist by the cyclotomic character Gal(K / K) -+ 

Z p ,and p is an element of V whose p-valuation can be determined. For 
unramified rings it is 1/ (p - 1). Otherwise one has to add the different of V 
over the Witt vectors. 

Now consider the exact squences 

and 

Ov/v®R -+ 0R/R -+ 0R/R®vV -+ 0 
v 

0R/v®R -+ 0R/V -+ 0R/R®vV -+ O. 
R 

Up to m-torsion they are isomorphic to the tensor product over Roo with R 
of the corresponding sequences where we replace V by V 00 and R by Roo' 
These read 

and 

Roo[ 1 / p]/ P -I Roo (1) -+ Roo[l/ p]/ p -I Roo (1) E9 (Roo[l/ p]/ Roo)d 

-+ (Roo[l/p]/Roo)d -+ 0 

Rood -+ Roo [1/p]d -+ (Roo [1/p]/Roo )d -+ O. 

The direct sums Rood ,Roo [1/p]d, etc. are free modules with the dlog(u j ) as 
basis. We derive the following result, formulated in a canonical way, without 
reference to the u j • 

4.1. Theorem. (i) The map 0R/V -+ 0R/V induces almost isomorphisms 

OR/v®R[l/p] ~ 0R/V and OR/v®(R[l/p]/R) ~ QR/R®vv' 
R R 
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(ii) The sequence 

is exact. 

o -+ Qv/v ® R -+ nR/R -+ QR/R®v V -+ 0 
v 

267 

Proof. We only have to show that the first map of the exact sequence in (ii) is 
injective. We already know that its kernel is annihilated by m . But Qv/v ®V R 
has no m-torsion. 0 

By using the second isomorphism in (i) to pull back the exact sequence in 
(ii) we obtain a canonical extension 

0-+ (R[1/p]/p-I R )(I) -+? -+ QR/v®(R[llp]IR) -+ O. 
R 

The Galois group r operates on this extension, and it is functorial with respect 
to morphisms between different R's. It splits as extensions of 
R ®v V -modules, but the splitting is not Gal ( K / K)-equivariant. Forming Tate 
modules (= Hom(QpIZp . . )) and Tate twists we obtain a canonical extension 
(" ~"= p-adic completion) 

o -+ p-IR~ -+ Ep -+ QR/v®R~(-I) -+ O. 
R 

(c) We can also compute the Galois cohomology of L1 with values in RIP' R 
or with values in the p-adic completion R~. In the latter case we use topo-
logical cohomology defined via continuous cochains. We could avoid this by 
dealing exclusively with the projective system {RIP' RI/ ~ O}. As R is an 
inductive limit of almost etale covers of Roo ®v V, the cohomology groups 
are almost isomorphic to those of Roo ®v V, where L1 has to be replaced 
by Zp(l)d = Gal(RooIR®v V). But the p-adic completion of Roo®v V 
is the topological direct sum of L1-eigenspaces (R ®v V) ~ U I al u2 a2 ••• U /d , 
where the exponents a i are in Z[11 p] and satisfy 0 ~ a i < 1. If all a i 
vanish the cohomology of the corresponding eigenspace is the exterior algebra 
over (R®v V)~(_I)d, and otherwise we obtain a finite direct sum of terms 
(R®v V)lp£(R®v V), where e = p-e 1(1 - lip), pe the maximal p-power 
occurring in the denominators of the a i . e is the p-valuation of a primitive 
peth root of unity. Hence 

H i(Zp(l)d. (Roo ® V)~) ~ Ai((R® V)~(_l)d) $ffi(R® V)lp£(R® V). 
v v v v 

The sum in the second term is direct, the exponents e are ~ 1 I (p - 1) , and 
they converge to O. 

We now obtain the following result. In (iii) (Kunneth) and (vi) (duality) we 
view H*(L1. R~) as an element ofthe derived category of (R ®v V)~-modules, 
represented by the canonical complex which computes it. 
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i -~ i -~ d 4.2. Theorem. (i) H (,1., R ) ~ A ((R ®v V) (-1) ) EB (rest), where "rest" is 
annihilated by pl/(P-I). The isomorphism is Gal(K/K) equivariant. 

(ii) If RI -+ R2 is an etale morphism, the induced morphisms 

Hi(,1.,RI~) ® (R2®V)~-+Hi(,1.,R2~) 
(Rl®VV)A V 

are almost isomorphisms 
(iii) If R = RI ®v R2, the morphisms (Kunneth) 

E9 HQ(,1., RI~) ®L vAHb (,1., R2~) -+ Hi (,1., R~) 
Q+b=i 

are almost isomorphisms (®L = derived tensor product). 
(iv) . The morphism QR/V -+ HI (,1., p-I R~( +1)) given by the extension Ep 

is induced by a functorial isomorphism 

HI (,1., R~)/(p-torsion) ~ QR/V ®(R ® V)~(-I), 
R v 

I -~ I I-~ via H (,1.,R (-I))-+H (,1.,p- R (-1)) (which kills torsion). 
i I -~ i-~ (v) The cup products A (H (,1., R )) -+ H (,1., R ) induce isomorphisms 

Hi(,1.,R~)/(p-torsion) ~ Q~/v®(R® V)~(-i). 
R v 

(vi) The cup products 

Hi (,1. , R~) x H d- i(,1., R~) -+ Hd (,1., R~)/(torsion) ~ Qd R/V ®(R ® V)~( -d) 
R v 

induce almost isomorphisms 

Hi (,1. , R~) -+ Rhom(R®v1y(Hd- i(,1., R~), Qd R/V ®(R® V)~(-d)). 
R v 

( The right side means homomorphisms in the derived category. If we work with 
coefficients R/ pI R, this would be the same as ordinary homomorphisms, by the 
known R-module structure of Hi (,1. , R~).) All these morphisms are functorial in 
R. 

(d) Proof. For (i) to (iii) we already know that they hold up to m-torsion by 
reducing to Roo ®v V and checking there. For (i), it follows that multiplication 
by pl/(P-I) sends p-torsion in Hi(,1.,R~) into m-torsion in 
Hi(Zp(1)d, (Roo ®v V)~). As this module has no m-torsion, it follows that 
pl/(P-I) annihilates the p-torsion. Now Hi (,1. , R~)/(p-torsion) contains 
Ai((R®v V)~(_I)d), with the Quotient annihilated by m. Since any map 
from minto Ai((R®v V)~(_l)d) extends to V, (i) follows. (ii) and (iii) are 
now obvious. For (iv) use that extension given by E p splits as extension of R ~ -
modules. A splitting can be defined by sending the ith basis element dlog(u i ) of 
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the third term, which represents the sequence dlog(u/- n
) in °:R/(R®vV) , into 

the same sequence in OR/v. This splitting is not equivariant under the Galois 
group Zp(l)d as an element of this group multiplies u/- n by a root of unity C, 
hence dlog(u/- n

) gets a summand dlog(C) E 0V/v. This association defines 
the class of the extension E p in Galois cohomology, and now (iv) reduces to a 
simple check of the various isomorphisms. (v) follows the same way. For (vi) 
we reduce (by Kiinneth) to the case d = I, R = V[T, T- I ]. It also suffices to 
consider Roo = ffio<EZ[I/P) V· TO< . Choose a generator a of the relevant Galois 
group Zp(I). Then H*(Zp(I), (Roo ®v V)~) is given by the kernel, respec-
tively co-kernel, of (a - I) on (Roo ®v V)~ , which is the topological direct 
sum (= p-adic completion of algebraic direct sum) of V~ • TO<, a E Z[l / p] . 
The dual of this complex is given by the product of these Zp(I)-eigenspaces, 
and the duality map (vi) is induced by the inclusion from the topological di-
rect sum into the direct product. As for any e > 0 pB annihilates kernel and 
cokernel of (a - I) on almost all summands, the assertion follows. 0 

(e) We also have shown that the canonical extension Ep can be obtained via 
pushout by R~ -+ p-IR~ from a r-equivariant extension 

0-+ R~ -+ E -+ 0R/V ®R~(-I) -+ o. 
R 

However, this extension is not functorial, but depends on the choice of the u j • 

If a E V is an element of p-valuation I/(p - I), a annihilates the p-torsion 
in HI(ll,R~), so the induced extension 

0-+ a-I R~ -+ Ea -+ OR/v®R~(-I) -+ 0 
R 

is, up to ll-isomorphisms, independent of choices. However, these isomor-
phisms are in general not r-linear. 

(f) Now let us comment on the open case, that is, where some of the u j may 
be nonunits, and we consider extensions which are etale outside the locus of 
pUI ... ud • We can proceed as before by denoting by R, respectively rand ll, 
the maximal extension of this type, respectively its Galois groups over V or V. 
There are, however, two relevant theories reflecting the distinction between co-
homology and cohomology with compact support. One of them is H* (ll, R~) 
and the other H* (ll ,J~). Here J c R is the ideal defining the locus of 
ul .•. ud ' that is, J is the kernel of R -+ (R/u l ..• udR)]l/ p]/(nilradical) . For 
the differentials we use differentials with logarithmic poles. Define 0R( dlog 00) 
as the submodule of 0R®R R[l/u l •.• ud] generated by OR and elements 
du/u, u E R, a p-power root of some uj . We check that this is indepen-
dent of the choice of the u j • Replace V by an unramified extension so that 
all irreducible components of Spec(R/ujR) are geometrically irreducible over 
K . As all these components are disjoint, we may localize and assume that each 
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Uj is either a unit or a prime element. Then any unit f in R[ljul ... ud ] is 
a product of a unit in R and a monomial in the u j • It follows that for any 
p-power root g of f dlog(g) is contained in n:R( dlog 00). Similarly we define 
differentials with logarithmic poles relative to some subring of R. 

The results of 3 above allow us to reduce computations to the case of the 
polynomial ring R = V[TI' ... ,Td ], and by using Kiinneth we end up with the 
case R = V[T]. Here 

Roo ® V = E9 V . Til (a E Q, a ~ 0) , 

(aEQ,a>O), 

(aEQ,a~O), 

and the relevant Galois group is Zp(l). We derive 

4.3. Theorem. There exists a r-equivariant functorial extension 

o -+ p-IR~ -+ Ep -+ nRlv(dlogoo)®R~(-I) -+ O. 
R 

This extension is obtained via pushout by R ~ -+ p -I R ~ jrom an extension 

0-+ R~ -+ E -+ nRlv(dlogoo)®R~(-I) -+ O. 
R 

r operates on this extension but not functorial/yo 
j -~ j - ~ d 4.4. Theorem. (i) H (L1, R ) ~ A ((R ®v V) (-1) ) $ (rest), where "rest" is 

annihilated by pl/(P-I). The isomorphism is Gal(KjK) equivariant. Similarly 
for J, 

Hj(L1,l~) ~ Ai ((R ® V)~( _1)d) $ (rest). 
v 

(ii) If RI -+ R2 is an etale morphism, the induced morphisms 

Hi(L1,RI~) ® (R2®V)~-+Hi(L1.R2~) 
(Rl®VV)" V 

and 

are almost isomorphisms. 
(iii) If R = RI ®v R2, the morphisms (Kunneth) 

E9 H a(L1, RI~) ®L v·Hb (L1, R2~) -+ Hi (L1, R~) 
a+b=i 

and 
E9 H a(L1,I, ~)®L v'Hb(L1,l2~) -+ Hi(L1,I~) 

a+b=i 
are almost isomorphisms. 
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(iv) The morphism nR/V --+ H'(l1, p-' R~(I)) given by the extension Ep is 
induced by a functorial isomorphism 

H'(11, R~)/(p-torsion) ~ nR/V(dlog00) ®(R ® V)~(-I), 
R v 

via H' (11, R~( -1)) --+ H' (11, p -, R~ (-1)) (which kills p-torsion). 
(v) The cup products Ai(H'(11,R~)) --+Hi(11,R~) induce isomorphism 

Hi (11, R~)/(p-torsion) ~ n~/v(dlogoo) ®(R ® V)~( -i). 
R v 

(vi) If J c R denotes the ideal generated by u, .. , ud ' the cup products 
o -~ i -~ i-~ H (11,1 ) x H (11, R ) --+ H (11,1 ) 

induce isomorphisms 

Hi (11,J~)/(p-torsion) ~ Jn~/v(dlogoo) ®(R ® V)~( -i). 
R v 

(vii) The cup product 

Hi(11,R~) x Hd-i(11,J~) --+ Hd(11,J~)/(torsion) ~ nd R/v®(R® V)~(-d) 
R v 

induces almost isomorphisms (in the derived category) 

and 

Hi (11, R~) --+ Rhom(R®v v((Hd- i (11,J~), nd R/V ®(R ®v V)~( -d)) 
R 

Hi(11,J~) --+ Rhom(R®vv((Hd- i(11 , R~), nd R/V ®(R ® V)~( -d)). 
R v 

( The right side means homomorphisms in the derived category. If we work with 
coefficients R/ p' R, those would be the same as ordinary homomorphisms) . 

All these morphisms are functorial in R. 

(f) Finally we have to investigate the relation with the previous theory. That 
is, we assume that (R, {u)) satisfies the same hypotheses as before but that in 
addition R has enough units, so that we can study R, the maximal extension 
unramified in characteristic O. We also assume that for each subset M c 
{I, ... ,d} the quotient ring RM = R/( {u i liE M}) is geometrically integral 
if it does not vanish and that the image of R* gives us enough units in it. 
Finally there should be a maximal M for which R M t- O. Let us denote by 11 
the Galois group of Rover R ®v V and by Li its quotient corresponding to 
exten~ions unramified in characteristic O. By I c 11 we denote the kernel of 
11 --+ 11. 

For any M C {I, ... , d}, choose a prime ideal q M C R lying over 
({u i liE M}) c R. If ({u i liE M}) = R, let qM = R. We can do this 
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in such a way that for MeN it is also true that qM c qN (start with a 
maximal M and decrease). In the following let M denote only subsets for 
which RM # O. 1M C d M Cd denotes the inertia, respectively decomposition, 
group of qM ' so that for MeN 1M c IN C In d N c d N C d M . The exten-
sion of R ®v V defined by u j l/n defines a map d-. Z~( l)d (Z~ = integral 
finite adeles, also equal to the product of Z/, I running through all primes). 
This map sends 1M into the product of those factors Z~ which are indexed 
by M (so 1M is abelian), and induces an isomorphism of the p-part of 1M 
with Zp(l)M. The quotient dM/IM is a quotient of the group d(RM) (the 
analogue of d for RM ) which corresponds to the extension R/qM of RM . 
The subgroup (/ ndM)/ 1M is the quotient of the corresponding inertia I(RM)' 

(g) If M has m elements, we obtain dM-linear morphisms 

Hm(/, R~) -. Hm(dM n I, (R/qM)~) 
° m - ~ -.H ((dMn/)/IM,H (/M,(R/qM) )) 

= HO((dM n /)/IM , (R/qM)~)(-m) -. RM( -m), 

hence also 
....... m -- • H (d, H (I, R )) -. H (dM/(dM n /), 

° - ~ .. --~ H ((dMn /)/IM,(R/qM) )(-m)) -.H (d(RM),RM )(-m). 

We use them in the following result, the proof of which will be given only up to 
a cer.tain point which will be established later. Let us remark that n~/v(dlogoo) 
= A'nR/V(dlogoo) has a filtration (the weight filtration) obtained by exterior 
power from n R/V C nR/v(dlogoo). The successive quotients in this filtration 
are EBM n Q RM/V' where the direct sum is over all M of cardinality band 
a=i-b. 

4.5. Theorem. (i) The spectral sequence 

E2 Q,b = HQ(d, Hb (I, R~)) ~ H Q+b (d, R~) 

degenerates up to m-torsion. 
(ii) The mappings (the direct sum EBM is over all M o/size b) 

E2 Q,b -. EaHQ(dM/(dM n /), HO((dM n /)/IM , (R/qM)~)( -b)) 
M 

+- EaHQ(~(RM),RM ~)(-b) 
M 

are almost isomorphisms. 
(iii) Under the isomorphism 

Hj(d,R~)/(p-torsion) ~ O~/v(dIOgoo)®(R® V)~(-i), 
R v 
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the filtration on Hi (ll, R~) given by the spectral sequence corresponds to the 
canonical filtration on Q~/V (dlog 00) such that the induced morphisms 

Eooa.b -+E9QaRM/v®(RM®V)~(-a-b) 
M R V 

correspond to the direct sum of the canonical mappings 

Ha(J.(RM),RM~) -+QaRM/V®(RM®V)~(-a). 
R V 

A corresponding result (with the obvious modification of (iii)) holds for coho-
mology with coefficients R/ / R . 

Proof. Our standard argument reduces everything (together with some uninspir-
ing bookeeping) to the case ~here R is a localization of V[T] and u l = T. 
In this case the groups ll, ll, I have cohomological dimension 1, as they 
are fundamental groups of affine curves in characteristic O. Hence (i) follows 
by a degree argument. Also only E2 0.0, E21•0 and E20 •1 are nontrivial (up to 
m-torsion). The term EtO = HO(ll, R~) has been computed, and it is what 
it is supposed to be. Furthermore, for M = {I} we have 1M = llM n I = 
llM' and so E20. 1 maps to (R®v V)~(-l). This map is surjective as up to 
p-torsion HI(ll, R~) is generated over (R ®v V)~ by the class in cohomology 
corresponding to the homomorphism II -+ Zp(l), and as this class maps to 
a generator of (R®v V)~. Moreover, HI(J.,R~) -+ E/'o -+ HI(ll,R~) -+ 

QR/v(dlogoo)®(R®v V)~(-l) has image QR/v®(R®v V)~(-l) whichim-
plies (iii) and (ii) up to possible p-torsion. Moreover we can already assert that 
the map HI (J., R~) -+ E/,O is almost injective as it is after inverting T and 
as HI(J.,R~) has no T-torsion (as follows from its explicit computation). 

All in all we have proved (i), (iii), and (ii) up to the unknown middle coho-
mology of the complex (in case d = 1) 

o -+ HI(J.,R~) -+ HI(ll,R~) -+ (R® V)~(-l) -+ O. 
v 

We already know that it is almost exact at the other positions, that this middle 
cohomology is p-torsion, and that multiplication by T = u l is locally nilpotent 
on it. We shall see that it is in fact m-torsion. 0 

II 

1. Construction of }f'* • 
(a) Suppose V is a complete discrete valuation ring with fraction field K of 

characteristic 0 and residue field k perfect of positive characteristic p > O. An 
affine V -scheme U is called small if there exists an etale V -morphism U-+ 
~m d , ~m the multiplicative group over V. Suppose X is a smooth V -scheme 
such that the geometric fiber X K is geometrically irreducible over K. For 
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any open nonempty subset V c X the geometric fundamental group d( V) = 
7r1(V(8hK) is a quotient of the absolute Galois group Gal(K(X)/K(X)) of 
K (X), and for VI C V2 an inclusion there is a surjection d( VI) -+ d( V2 ) • 

If V is affine we denote by R(V) its affine ring and by R(V) the maxi-
mal extension of R(V) which is unramified in characteristic o. Again for 
VI C V2 there is a map R ( V2) -+ R ( VI)' so R ( V) defines a pre sheaf of 
rings on the site defined by the affine open subsets of X. The cohomology 
H*(d( V), R(V)~) can be computed by the conical complex C* (d( V), R(V)~) 
with Cn(d(V) , R(V)~) = continuous maps d(V)n -+ R(V)~. It can be con-
structed from the canonical simplicial models for B(d( V)), is a pre sheaf of 
complexes, and moreover, C* (d( V) , R (V)~) is equal to the projective limit 
of C*(d(V),R(V)/P'R(V)) , I> O. Further properties follow. The absolute 
Galois group of K(X) acts on C* (d( V), R( V)~) , and the restriction of this ac-
tion to the absolute Galois group of K(X) is homotopic to the trivial action by 
a nice compatible system of homotopies. We also have a functorial cup product 
C*(d(V), R(V)~) ®v' C*(d(V), R(V)~) -+ C*(d(V), R(V)~), associative up 
to canonical homotopy. 

So far C* (d( V) , R( V)~) has been defined as a presheaf of complexes with 
values in p-adically complete (&x ®v V)-modules. This abelian category has 
the full subcategory of m-torsion modules, and from now on we view 
C* (d( V) ,R( V)~) as a presheaf with values in the quotient category. That 
means that we worry about exactness only up to m-torsion and that maps 
M -+ N in this quotient category are represented by "real" maps mM/m-
torsion -+ mN/m-torsion. The quotient category has arbitrary inverse and direct 
(small) limits. 

(b) Let us now restrict to small V's. Then the cohomology H* (d( V), R( V)~) 
= H*(C*(d(V),R(V)~)) has been computed in §I, Theorem 4.2, and it fol-
lows that it is a sheaf (this means up to m-torsion, to remind the reader of 
our conventions). It follows that for V. -+ W a hypercovering in the cate-
gory of small affine open subsets of X , the induced map C* (d( W) , R (W)~) -+ 

Tot( C* (d( V.) , R( V.)~)) is a quasi-isomorphism. In turn this implies that for 
V. -+ X any hypercovering with all Vn affine and disjoint unions of small 
pieces, the total complex Tot( C* (d( VJ ' R ( V.) ~)) is, up to quasi-isomorphism, 
independent of the choice of V .. We define Jr* (X) as the cohomology of this 
complex, which takes values in V~ -modules/ m-torsion and has a 
Gal(K / K)-action. However, sometimes we use derived categories, and then 
Jr* (X) is represented by the complex above, which has an action of the abso-
lute Galois group of K(X), null-homotopic on that of K(X). 

For any number a we define the subcomplex 

-:;aC*(d(V),R(V)~) c C*(d(VJ,R(VJ~) 
by the rule 
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Kernel(d(~(u). R(U)~) - C i+' (~(U). R(U)~)). if i = a 
-0. ifi>a. 

It follows that the inclusion <aC*(~(U). R(U)~) C C* (~(U). R(U)~) induces 
an isomorphism on cohomology in degree ~ a and that <aC*(~(U).R(U)~) 
is acyclic in degree > a . -

The subcomplex <aC*(~( U). R(U)~) of <aC*(~(U). R(U)~) coincides with 
<aC*(~(U).R(U)~) in degrees #a,whilei~degree a <aCa(~(U).R(U)~) is 
the preimage of the p-torsion in Ha«aC*(~(U), R(U)~)) under 
<aCa(~(U). R(U)~) - Ha«aC*(~(U), R(U)~)). All these constructions are 
functorial in U, and the construction above gives cohomology groups <aJr* (X) 
and <aJr* (X) with the obvious mappings between them. Everything can be 
defined on the level of derived categories associated to complexes with a suitable 
filtration. We can also work mod p' by tensoring. However, then <aJr* (X) 
cannot be so easily described. 

The cup product respects filtrations, i.e. it maps <aJr* (X) x <bJr* (X) into 
<a+bJr*(X) and <aJr*(X) x <bJr*(X) into <a+b;r*(X), also in the sense of 
derived categories~ 

(c) If f: X - Z is a V-morphism, we define f*: Jr*(Z) - Jr*(X), as 
follows. There is a morphism f. from Gal(K(X)jK(X)) to the quotient of 
Gal(K(Z)j K(Z)) which classifies extensions unramified in the image of the 
generic point of X. It is well defined up to conjugacy, and for small affines 
U c X and W c Z with f( U) c W this induces compatible maps ~(U) -
~(W), R(W) - R(U). If we choose hypercoverings U. - X and u-: - Z 
such that f extends to a map of simplicial schemes U. - U-:, we obtain 
an induced map f*: Tot(C*(~(U-:). R(U-:)~)) - Tot(C* (~(U.). R( U.)~)). Up 
to homotopy it is independent of all choices and represents f*. We have 
corresponding results for <aJr* and <aJr* . Also cup products are functorial. 
Finally, for smooth V -schemes X which are not geometrically irreducible, we 
can define Jr*(X) by the following procedure. If X is irreducible, denote by 
V; the integral closure of V in &'X so that X is geometrically irreducible over 
V,. V; is a finite etale extension of V, and X ®v V is the disjoint union of 
[K, : K] copies of X ®v1 V permuted by Gal(K j K). Define Jr* (X) as the 
induced (via Gal(KjK,) c Gal(KjK)) module associated to the cohomology 
of X relative to V;, or equivalently as the direct sum of [K,: K] copies of 
this cohomology, with the corresponding extension of the Gal(K j K, )-action 
to Gal(K j K). For nonirreducible X use the direct sum of the co homologies 
of the connected components. These constructions also apply to ~aJr* and 
<aJr* . 

Finally all these extend to simplicial schemes. 
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(d) We now exhibit some properties of ,Jf'* . Let us first remark that 

~aC"(Ll(U), R(U)~)j <aC* (Ll(U) , R(U)~) 

== rt X/V ® (R(U) ® V)~( -a)[-a], 
R(U) V 

and that <dC"(Ll(U),R(U)~) -+ C*(Ll(U),R(U)~) is a quasi-isomorphism if 
X has relative dimension d over V. Also we denote by 2' the formal scheme 
associated to X . 

1.1. Theorem. (i) There exists a spectral sequence 

E/,b = Ha(2' ® V, Hb (Ll(U) , R(U)~)) :::;. ,Jf'a+b (X). 
V 

E2 a ,b vanishes unless 0::; a, b ::; d. Furthermore, up to p-torsion 

E/,b = Ha(2' ,rl X/v ®&,r) ® V~(-b). 
&x VA 

(ii) ,Jf'i (X) = 0 unless 0 ::; i ::; 2d. 
(iii) If X = XI X V X2 is a product, the map (®L = derived tensor product) 

.. t<::>\ L * .. 
,Jf' (XI) \(Y vA,Jf' (X2) -+,Jf' (X) 

is an isomorphism (Kunneth formula). 
(iv) Suppose X is proper over V of pure relative dimension d. The trace 

map defined by 

,Jf'2d (X) = ~d,Jf'2d (X) -+ Hd (2', ad X/v ®&,r) ® V~( -d) -+ V~( -d) 
&x VA 

defines an isomorphism (Poincare duality) 

,Jf'i (X) == Rhomv A(,Jf'2d-i (X), V~ (-d)). 

It also induces isomorphisms 
i 2d-i -~ 

~a,Jf' (X) == RhomvA((,Jf' j <d-a,Jf') (X), V (-d)) 

and 
i 2d-i -~ <a,Jf' (X) == RhomvA((,Jf'j~d_a,Jf') (X), V (-d)). 

These isomorphisms are compatible with the Kunneth formula. 
(v) If f: X -+ Z is a morphism between proper smooth V-schemes, 

j* : ~"(Z) -+ ~"(X) has an adjoint (for Poincare duality) I.: ~"(X) -+ 
~ .. (Z). Especially, if X C Z is a smooth closed subscheme of pure codimen-
sion t, it has a characteristic class c(X) E ~2t (Z)(t). This class lifts canonically 
to c(X) E9 ~2t(Z)(t) and is invariant under Gal(KjK). 

Proof. The spectral sequence in (i) is well known, and the computation of the 
E2-term follows from §I. (ii) is now obvious, and (iii) follows from §I if we use 



p-ADIC HODGE THEORY 277 

as hypercovering of X the product of hypercoverings of XI and X 2 • Finally, 
the duality (iv) reduces to the duality in §I, Theorem 4.2 and Serre duality on 
2' , and (v) is a formal consequence: c(X) is the image of 1 E <o~o(X) under 
.r..:~o~o(X) -+ ~1~21(Z)(t). 0 -

Remark. There are also versions with coefficients R/ / R. Note that duality 
becomes simpler in this context as V / / V is (almost) injective over itself. 

(e) As an example let us compute the cohomology of X = pI v' It is clear that 
~o(X) = <I~O(X) = V~ , and we shall see (by injecting into the cohomology 
of pI - {O, oo}, see (f) below) that the analogous result also holds mod / . 

-~ -~ - /-From the exact cohomology sequence to 0 -+ R -+ R -+ R/ p R -+ 0 we 
get that ~I (X) has no p-torsion. Finally, from the spectral sequence above 
(which degenerates) we obtain that ~I (X) = <I~I (X) is p-torsion, hence 
vanishes, and that <I~2(X) = torsion in ~2(X), with quotient V~(-l). 

2 I I -~ By duality <I~ (X) = Extid<l~ (X), V ) = O. As a result we see that 
~.(pl v) is precisely what it should be in any reasonable cohomology theory. 
As this coincides with the cohomology of &x' respectively Qx/v' it follows 
from the spectral sequence (i) above that the sheaf" p-torsion in HI (~, R~) ,. 
has trivial cohomology on 2' . 

(f) Now let us explain how to deal with the open case. Suppose X is smooth 
over V, as before, and D c X is a divisor with normal crossings, relative to 
V, with smooth components D I , ••• ,Dr' We assume that X as well as all irre-
ducible components of finite intersections of D; 's are geometrically irreducible. 
This is not really necessary as we can deal with these problems by standard 
methods, but it simplifies the exposition. An open affine subset U c X is called 
small if the intersection of U with any finite intersection of D;'s is irreducible 
and if there exists an etale morphism U -+ Ad y into an affine space such that 
each Un D; is pullback of a standard hyperplane in Ad v' Furthermore, there 
is a maximal subset of the D; whose intersection meets U. For each such U 
we can form R(U), the maximal extension of U which ramifies only along D 
or in characteristic p, and we also define the ideal J (U) c R (U). After this 
we proceed as before, and obtain two cohomology theories ~. (X - D) and 
~·(X - D)(= cohomology with compact support), or even <a~·(X - D), 
<a~·(X - D), <a~·(X - D), and <a~·(X - D). The notation is not quite 
precise as they depend on the pair (X, D) and not just on the complement 
X - D. Before we list their properties let us compute an example, which will 
also allow us to finish the proof of Theorem 4.5 in §1. 

Consider D = {O, oo} c X = pI v' We obtain a small open covering of X 
by X = Uo u U 00 = (X - {oo}) U (X - {O}) . The corresponding rings R o ' Roo' 
and R = R(Uo n Uoo ) are free V-modules whose bases are given by Tfr. where 
a E Q and either a ~ 0, as 0, or a is arbitrary. The relevant Galois group 
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is .1 = Z~ (1) , operating on the complex R ~ ° ffi R ~ 00 -+ R ~ , and we have to 
compute hypercohomology. As the complex is quasi-isomorphic to V~, this 
is trivial. 2'°(X - D) = V~, 2'1 (X - D) = V~(-I), and all other groups 
vanish. Furthermore, this coincides with the cohomology of &x' respectively 
Qx/v(dlogoo) , so that from the spectral sequence Theorem 1.2(i) below (which 
is the analogue of the spectral sequence Theorem 1.1(i) above) we obtain that 
the sheaf" p-torsion in HI (.1. R~)" has trivial cohomology on fC'. 

If we refine our covering above to a hypercovering by small open subsets 
(in the previous sense) we can compare this with 2'* (X) , which we already 
computed. First the map is induced from the maps Hi(~. R~) -+ Hi(.1. R~) of 
§I, which were isomorphisms for i = 0 and injective for i = 1 with the cokernel 
concentrated at 0 and 00, and an extension of V~ ( -1) by a p-torsion group. 
This p-torsion group is the cokernel of the injection" p-torsion in HI (~. R~) " 
-+ "p-torsion in HI (.1. R~) ," and we wanted to show that is vanishes (that is, 
in our previous terminology "up to m-torsion"). But both sheaves above have 
trivial cohomology on X, so this also holds for the cokernel. As the cokernel 
is supported only at 0 and 00, it must vanish. 0 

(g) We now can exhibit the main properties of 2'* (X -D) and 2'* c(X -D). 
Choose hypercoverings of X whose pieces U are very small, that is, they are 
small and their intersections with any irreducible component of an intersection 
of Di'S is small in t~ previous sense. The spectral sequence associated to the 
surjection .1( U) -+ .1( U) defines a filtration on 2'* (X - D), the weight fil-
tration w.. The sucessive quotients in this filtration are 2'* applied to finite 
intersections of D/s, by §I, Theorem 4.5. Finally, the filtrations by < a and 
~ a are transversal to the weight filtration and induce the corresponding filtra-
tions on successive quotients. In fact all this should (and can) be done in the 
derived category, but we leave this to the reader interested in such matters. We 
get 

1.2. Theorem. (i) There exist spectral sequences 
E/,b = HQ(fC'® v. H b(.1(U) .R(U)~)) ~ 2'Q+b(X - D). 

V 

E2 Q,b = HQ(fC' ® V. Hb (.1(U). J(U)~)) ~ J'?,;Q+b (X - D). 
v 

The E2 Q ,b vanish unless 0 ~ a . b ~ d. Furthermore. up to p-torsion 

E2Q,b =HQ(fC'.o.b x/v(dlogoo)®&2')®V~(-b). 
dx VA 

respectively 
Q,b Q b IV\ IV\-~ 

E2 = H (fC'.Jn x;V(dlogoo)\CI&2')\CI V (-b). 
dx VA 

(ii) 2'i (X) = J'?,;i (X) = 0, unless 0 ~ i ~ 2d. 



p-ADIC HODGE THEORY 279 

(iii) If X = XI Xv X2 is a product and D = DI Xv X2 UXI Xv D2, the maps 
(®L = derived tensor product) 

* t:::J\ L * * Jr (XI - DI) \C)I v·Jr (X2 - D2) - Jr (X - D), 

* t:::J\ L * * He (XI - DI) \C)I v'~ (X2 - D2) - ~ (X - D) 
are isomorphisms (KUnneth formula) . 

(iv) Suppose X is proper over V, of pure relative dimension d. The trace 
map defined by 

~2d(X_D) = Sd~2d(X-D) _ Hd(Jr,gd x/v®&'x)® V~(-d) - V~(-d) 
~x v' 

defines isomorphisms (Poincare duality) 
i 2d-i-~ Jr (X - D) ~ Rhomv'(~ (X - D), V (-d)) 

and 
i 2d-i-~ 

~ (X - D) ~ Rhomv·(Jr (X - D), V (-d)). 
It also induces isomorphisms 

i ~ 2d-i-~ 
~aJr (X - D) = Rhomv'((~/ <d-a~) (X - D), V (-d)) , 

i ~ 2d-i-~ 
<aJr (X - D) = Rhomv'((~/ ~d-a~) (X - D), V (-d)) , 

i 2d-i-~ 
9~ (X - D) ~ Rhomv·((Jr / <d-aJr) (X - D), V (-d)), 

i 2d-i-~ 
<a~ (X - D) ~ Rhomv·((Jr / ~d_aJr) (X - D), V (-d)). 

These isomorphisms are compatible with the KUnneth formula. 
(v) For any subset Me {I, ... ,r}, denote by X(M) c X the intersection 

of the Di' i EM. Then the associated grading of the weight filtration w: is 
given (in the usual numbering) by 

W;+s(Jri(X -D))/W;+s_I(Jri(X -D)) ~ ffi Jri-\X(M))(-s), 
IMI=s 

W;+s«aJri(X -D))/W;+s_I«aJri(X -D)) ~ ffi <a_sJri-s(X(M))(-s), 
jMl=s 

W;+s(9Jri(X - D))/W;+s-I (~aJri(X - D)) ~ ffi ~a_sJri-S(X(M))( -s). 
IMI=s 

These equations should be read in the derived category. The isomorphisms 
~aJroO / <aJr*(X - D) - HoO-a(2', gax/v (dlog00) ®(&'2' ® V)(-a)) 

~x v 
transform the w: -filtration on the left into the w: -filtration on the right. For (i) 
to (v) there are corresponding results with coefficients R/ / R . 

Finally, a remark about functoriality for JroO(X - D). It holds for maps 
f: X - Z for which D ~ f-I(E) , D eX, and E c Z the divisors at 
infinity. 
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2. The isomorphism with etale cohomology 
(a) Let us recall the definition of a K (11:, 1 )-space in etale topology. Suppose 

X is a smooth irreducible scheme over an algebraically closed field K , of char-
acteristic 0, and 11: its fundamental group. If F is a finite abelian group with 
continuous 1I:-action corresponding to a locally constant etale sheaf F on X, 
there exists a natural transformation H*(1I:, F) -+ H*(X, F) (etale topology). 
We say that X is a K (11: , 1) if this is an isomorphism for all F as above. 
This is equivalent to the assertion that fot any F and any class ¢ E Hi (X, F) , 
i > 0, there exists a finite etale covering Y -+ X such that the pullback of 
¢ to Y vanishes. It is known (SGA 4) that the open subsets U C X which 
are K(1I:, 1)'s form a base for the topology of X, and we derive that for each 
point x E X the spectrum of the local ring &x ,x is a filtering projective limit 
of K(1I:, l)'s, hence itself a K(7C, I). 

We need a generalization of this statement. Let V denote a discrete valuation 
ring with the usual hypotheses and K its field of fractions. Suppose now X is 
a smooth V -scheme. An open subset U c X is called a K (11: , I) if U ® v K 
is so. 

2. I. Lemma. Any x E X is contained in an open U C X which is a K (11: , 1) . 

Prooj(Compare SGA 4, XI.3.3 or [Fr, Theorem 1 1.5/1 1.6 ]). We may assume 
that the residue field k of V is algebraically closed, that x is a k-rational point 
in the closed fiber, and that X is affine and irreducible of relative dimension d . 
Embed X into some projective space P = pn V ' with closure X, X = X - Y , 
Y reduced of relative dimension d - I. On the dense set yO C Y of points 
where Y is smooth over V Qy/v is a quotient of the restriction of Qp/v to 
Y, and we obtain a map from yO into the (relative to P) Grassmannian of 
rank-(d - 1) quotients of Qp/v' Let Z denote the closure of the graph of this 
map, so that Z is a proper modification of Y on which Qy/v extends to a 
quotient bundle W of Qp/v' A linear subspace L c P of codimension d - 1 
is called good if the intersection of L with X is smooth, if L meets the generic 
fiber YK in yO K ' and if for any Z E Z with projection yE Y lying on L the 
map Qp/v(y) -+ W(Z)$QLjV(y) is an isomorphism .. A dimension count shows 
that good L's through x fonn a dense open subset In the parameter space of 
all such L's, provided one modifies the embedding X c P = pn V via some 
pn V C pN V' Note also that for a good L the intersection (Y n L) K is reduced. 

We find open subsets x E U eX, We p/-' , and a projection U -+ W 
such that all fibers are intersections X n L, L good. On the generic fibers this 
induces an elementary fibration, that is, the complement of a finite etale divisor 
in a family of complete smooth curves. The projection thus is a fibration in 
etale homotopy, and we conclude by induction. 0 

2.2. Corollary. For X as above, x EX, Spec(&x,x ®v K) is a K(7C, 1). 

Let us also note the "open" version. 
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2.3. Lemma. Suppose X is smooth over V, D c X a divisor with normal 
crossings (relative to V). If x E X and f E &x.x is a local equation for D 
near x, Spec(&x.X£I/11®vK) isa K(7C, I). 

Proof· We may assume that f = J;/z ... 1;, where the J; are elements of the 
maximal ideal of &x.x which extend to a regular system of parameters. We 
have to show that for any finite 7C-module M and any ¢> E H~t(M), i > 0, 
the class ¢> dies in a finite etale extension of Spec(&x .x[1 /11 ®v K). In the 
course of the proof we may always pass over to the extension generated by taking 
nth roots of all J;, since the normalization of &x.x in this extension is local 
and satisfies the same hypotheses as &x.x itself. From Abhyankhar's lemma 
it follows that we may assume that M is unramified, that is, M is a module 
for the fundamental group of Spec(&x.x ®v K). If j denotes the inclusion 
Spec(&x.X£ 1/11 ®v K] c Spec(&x.x ®v K) , there is a spectral sequence 

a.b a -. b a+b ' -
E2 =H (Spec(&x.x®vK),RJ* (M))~H (Spec(&x.x[1/11®vK),M). 

Taking nth roots induces multiplication by nb on E2 a.b , composed with some 
other map. As M is finite we may use this procedure several times and reduce 
to the case, that ¢> is restriction of some cohomology class on Spec(&x.x ®v K) . 
But now we only have to apply the corollary above. 0 

(b) These technicalities out of the way we make the following construction. 
Suppose X is smooth over V, I > O. By associating to any affine open sub-
set U c X the group cohomology H* (~( U), Z/ p' Z) or the etale cohomology 
H* (U ®v K, Z/ p' Z) we obtain presheaves on X with a map from the first to 
the second which induces an isomorphism on associated sheaves. The stalks in 
XEX are 

H*(7C t (Spec(&x.x ®K)), Z/P'Z) , 
v 

respectively 
H* (Spec(&x.x ® K), Z/ p' Z) , 

v 
which coincide by the technicalities above. It is clear that the associated sheaves 
are the higher direct images of Z/ p' Z under the map (etale topos of X ®v K) 
-+ (Zariski topos of X). If we view everything as objects in a suitable derived 

* - I category, the hypercohomology of these sheaves is H (X ®v K, Z/ p Z). 
The hypercohomology can be computed on the level of presheaves as the 

direct limit of the associated complexes of sections on U. over all hypercov-
erings U. -+ X. If U. consists of small open affines the natural transfor-
mation H*(~(U),Z/p'Z) -+ H*(~(U),R(U)/P'R(U)) now defines a natural 
transformation H*(X ®v K, Z/ P'Z) -+ Ji'?*(X, R/ p' R). Of course this trans-
formation should be seen in the derived category as a map between complexes. 
If X is proper over V the theory Ji'?* (X) satisfies the necessary finiteness 
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conditions so that we can pass to the limit and obtain, at least on the level 
of cohomology groups, a natural transformation H* (X ®y K ,Zp) ~ )f'* (X) 
or H*(X ®v K, Zp) ®zp V~ ~ )f'*(X). We shall see that this is an almost 
isomorphism. 

(c) All this can be extended to the open case. If X is smooth over V, 
D c X a divisor with normal crossings (relative to V), we might redo things 
above using fundamental groups or etale cohomology of Un (X - D) and arrive 
at natural transformations H*((X - D) ®v K, Z//Z) ~ )f'*(X - D, R// R) 
(in the derived category), and for proper X H*((X -D) ®v K, Zp) ®zp V~ ~ 
)f'*(X - D). A check of the definitions reveals that these respect weight filtra-
tions and that on the associated graded pieces we obtain the previous transfor-
mations. Hence in this more general case we also obtain almost isomorphisms. 

(d) From now on we mainly work with cohomology mod / , as Poincare 
duality is simpler in this context. We do not have to worry about Ext groups. 
The transformations H*(X®vK,Z//Z) ® V//V ~ )f'*(X,R//R) pre-
serve cup products. Let us show that this also holds for characteristic classes 
of subvarieties. So assume that X is proper and smooth over V and that 
Z c X is a smooth closed subscheme of pure relative dimension t. We 
claim that the characteristic class c(Z) E H2t(X®vK,Z//Z)(t) maps to 
c(Z) E )f'2t(X,R//R)(t). This holds if t = 1, that is, if Z is a smooth 
divisor: We may assume that X has pure relative dimension d over V. 
The weight filtration on the complex C* (X - z, R/ / R) (which computes 
)f'* (X - z, R/ / R)) gives rise to an extension 

* - [- * - [- * - [-
O~ C (X,R/p R) ~ C (X - Z,R/p R) ~ C (Z,R/p R)(-I)[-I] ~ O. 

The corresponding extension in etale topology represents c(Z) there, and it 
maps into this extension. So we have to show that it represents c(Z) in )f'* , 
that is, we have to show that for any class ¢ E )f'2(d-I)(Z ,R//R)(d - 1), the 
Z-trace of ¢ is equal to the X -trace of the image of ¢ under the connecting 

2(d I) - [- 2d - [-morphism)f' - (Z, R/ p R)(d - 1) ~)f' (Z, R/ P R)(d) associated to the 
exact sequence above. But trace maps are defined via the transformation from 
)f'* into differentials, which maps the exact sequence above into 

o ~ H*(X, nd x/v) ® V~ ~ H*(X, nd X/v (dlog00)) ® V~ 
v v 

~ H*(z,nd - 1ZfV)® V~ ~ 0, 
v 

associated to 0 ~ nd X/v ~ nd X/v (dlog00) ~ nd - I Z/V ~ O. However, this 
sequence represents the characteristic class of Z in Hodge cohomology, and so 
the assertion follows. 

For t > 1 we denote by i the blow-up of X along Z. The preim-
age of Z in i is a smooth divisor E which is a pt-I -bundle over Z. If 



p-ADIC HODGE THEORY 283 

e E < 1 Jr2 (i , RIP' R) (I) denotes the characteristic class of E, we claim that 
for a~y if> E Jr2(d-t)(Z, RIP' R)(d -t), the Z-trace of if> is equal to the E-trace 
of the product with et - 1 of the pullback of if>. If we show that the image of 
e under ~IJr2(i,RIP'R)(I) -+ H\X,nXfV)®v VIP'V is the characteristic 
class of E in Hodge cohomology, everything follows from the corresponding 
formula in this theory, and from compatibility with cup product of the pro-

* - - /- * a a - /-jections ~aJr (X,Rlp R)(a) -+ H - (X,n x/v)®v Vip V. However, the 
remaining assertion follows also by those methods, mapping 

o -+ ~IC*(X ,R~) -+ ~l C*(X - E, R~) -+ ~oC*(E, R~)(-I)[-I] -+ 0 

to differentials. 
We also derive that the transformation 

H2d (X ® K ,ZIP' Z) ® V I pi V(d) -+ Jr2d (X, RI pi R)(d) 
v 

is compatible with trace maps by evaluating at characteristic classes of points. 
(e) Finally we can show the main result. 

2.4. Theorem. The transformations (X proper and smooth, D c X a divisor 
with normal crossings) 

H*((X - D) ®K ,ZIP'Z) ® V IP'v -+ Jr*(X - D ,RIP'R) , 
v 

H*((X - D) ®K, Zp) ® V~ -+ Jr*(X - D) 
v 

are almost isomorphisms. They respect weight filtrations. 

Proof. It suffices to consider the first mappings, and we may assume that D = 
0. We compute module m-torsion. By Poincare duality and compatibility of 
trace maps the transformation H* (X ®v K ,ZIP' Z)® V I P' V -+ Jr* (X ,RIP' R) 
has a left inverse. If we show that this left inverse preserves cup product, the 
same reasoning gives a left inverse for it, and so all maps are isomorphisms. As 
everything is already compatible with Kiinneth products, it suffices if the left 
inverse commutes with 0*, 0: X C X x v X the diagonal embedding. This 
is equivalent to H* (X ®v K, ZI P' Z) ® V I P' V -+ Jr* (X ,RIP' R) commuting 
with 0*, which follows easily from the fact that it respects the characteristic 
class of the diagonal, and that 0* is surjective. 0 

(f) Some examples. 
(I) Let X = p" V' We want to compute <aJr*(X) and <aJr*(X). If e E 

< 1 Jr2 (X) is the characterisitc class of a hypeq,lane, we claim that <aJr* (X) = 
~a_lJr*(X) = V~[T]/(Ta), with T corresponding to e. This is the result 
we expect in any decent theory. It is easily shown by induction over n. In 
the induction step we consider the divisor D C pn v' where D is the union 
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of the n + 1 standard hyperplanes. The computation of <aK*(X - D) and 
<a-I K* (X -D) proceeds as in the case n = 1 , using the standard open covering 
of X, and the result is what we expect from any reasonable cohomology theory. 
As for the intersections of components D j the result is known by induction; 
the assertion follows. 

(ii) If T == ~m d is a torus over V and T c X a smooth torus embedding, 
where X is proper over V, and D = X - T is a divisor with normal crossings, 
the cohomology K*(X -D) can be computed using the small covering defined 
by T-invariant open affines. We derive that K*(X - D) is independent of 
the embedding and an exterior algebra in d generators of degree 1. These 
generators lie in <IKI(X - D), and <aK*(X - D) = <a_IK*(X - D) has as 
basis monomials of degree < a in these generators. -

(iii).Let B~m denote the classifying simplicial scheme for ~m' so (B~m)n = 
~m n. We would like to compactify to a proper simplicial scheme. We cannot 
quite do that, but at least we can find torus embeddings (B~m)n c X n ' with 
Xn smooth and proper over V, and Dn = Xn - (B~m)n a divisor with nor-
mal crossings, such that the degeneracies aj : (B~m)n -+ (B~m)n_1 extend to 
Xn -+ X n_ 1 . These suffice to define K"(X. - D.) (only the a/ appear in the 
relevant double complex), and by the usual spectral sequences and the compu-
tation (ii) above we see that K*(X. - D.) is independent of all choices, and 
given by the polynomial algebra in one generator e in degree two. e lies in 
<IK2(X. -D.H1), is Gal(KjK)-invariant, and the groups <a_IK*(X. -D.) = 
:aK*(X. - D.) are generated by monomials of degree < a in e. e is the first 
Chern class of the universal line bundle over B~m. Of course, we could also 
use the cohomology of B~m itself, to which K*(X -D) maps. However, there 
we encounter difficulties with p-torsion, which makes it more difficult to check 
identities. 

If Y is a line bundle over some X, there exists a hypercovering U. -+ X 
and a map U. -+ B~m such that the pullback of Y to U. is isomorphic to the 
pullback of the universal line bundle on B~m. It follows that we can define the 
first Chern class of Y in < I K2 (XH 1) = < I K2 ( U.) ( 1) as the pullback of e . 
Its image in K 2(X)(1) is the image of the first Chern class in etale topology. 

We can also check that for a smooth divisor Z c X (X smooth and proper) 
the Chern class of &'x(Z) coincides with the characteristic class of Z. The 
action of ~m on pi defines a pi -bundle over B~m with a smooth divisor 
given by {O, oo} C pl. There exists a hypercoving U. -+ X such that the 
pullback of Z to U. is induced from this universal example. Hence it suffices 
to treat this universal case. Here the method of torus embeddings implies that 
<IK2 is isomorphic to K2, and the assertion follows. We also derive that the 
- 2 I -~ 
image of the first Chern class in (~IK j <IK) (XH1) = H (X, Ox/v) ®v V 
is equal to the Chern class there, as this holds in the universal example. 
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(iv) Let f: Y = P x(,w) -+ X denote a projective bundle associated to a 
rank-e vector bundle ,w on X. By e E ~1;r"2(y) we denote the first Chern 
class of &( 1). Then 

and 

~a;r"i (Y) 3: E9 ~a-J;r"i- J (X)eJ • 
O~J<e 

<a;r"i(y) 3: E9 <a_J;r"i-J (X)eJ . 
O~J<e 

Proof. The assertion holds for «a;r" I <a;r")*(Y) , which is given by Hodge co-
homology. It thus suffices to treat-«a;r" I <a_l;r")* (Y). Choose a hypercovering 
U. -+ X which trivializes ,w , so that the pullback of Y to U. is isomorphic to 
pe-l xU. The cohomology «a;r" I <a_l;r") * of this is abutment of a spectral 
sequence, which starts with the coho~ology of the pieces pe-l X Un . As these 
are known (by Ko.nneth), we derive that the spectral sequence degenerates and 
that the required result holds. 0 

It follows that we can define Chern classes ci(,w) E <i;r"2i(X)(i). For a 
smooth subscheme Z C X of pure codimension t this leads to a new definition 
of the characteristic class c(Z) E <t;r"2t (X)(t) , which again coincides with the 
previous one. Blow up Z and reduce to the case of a divisor. Finally, we 
can use the splitting principle to reduce assertions about these Chern classes to 
assertions about line bundles, which usually can be easily shown for the universal 
case B:§m. 

(v) Just as in the case of B:§m we also can define classifying simplicial 
schemes B:§2'(e) for vector bundles of rank e. However, it is more difficult 
to compactify them. We restrict ourselves to note that one can define canonical 
Chern classes (of the universal bundle) in their cohomology which for example 
allows to define regulator mappings from K-theory into ;r"* (compare [BD. 

3. Relations to Hodge cohomology. 
(a) The Hodge cohomology of a pair (X. D) (as usual) with coefficients V~ 

is defined by 

Hih(X - D) = E9 Ha(X. nb x/v (dlog00)) ® V~(-b). 
a+b=i V 

It can be represented by a complex in the derived category. There are variants 
with coefficients V I / V. H* h has the usual properties of a cohomology theory, 
like cup product, Ko.nneth formula or Poincare duality. We intend to define 
mappings from H* h to ;r"*. This is very easy if we invert p. The spectral 
sequence 

a b a b ~-~ a+b E2 . = H (X. Q x/v (dlog00)) 'CI V [II p]( -b) ~;r" (X - D)[li p] 
v 
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degenerates, as it is Gal(K / K)-equivariant, and there is no nonzero map be-
tween V~[1 / p]( -b)'s of different weights b [T]. The same holds for extensions, 
and we get a natural isomorphism 

Kn(X - D)[l/p] = EB Ha(X, n b x/v (dlog 00)) ® V~[l/p]( -b). 
a+b=n V 

It preserves all relevant structures, as products, duality, Chern classes (use the 
classifying scheme BJJm ). In the following we try to control the powers of p 
in the denominators above. Let us remark immediately that all our transforma-
tions will respect Chern classes of vector bundles (and hence also characteristic 
classes of subvarieties) by considering BJJm ' whose cohomology has no torsion. 

(b) Let us recall the functorial extensions 
o -+ p-lR~ -+ Ep -+ nR/v(dlogoo)®R~(-l) -+ 0 

R 

where R = R(U) for some small open U eX. Their exterior powers give rise 
to exact sequences 

o -+ p-lni-lR/V(dIOgoo)®R~(l - i) 
R 

i i -~ 
-+AEp-+nR/v(dlogoo)®R (-i)-+O. 

Apply C· (.1( U), ... ) and take hypercohomology to get natural transformations 
a b f(>. b-~ a+b H (X, n x/v (dlog00)) \CI p V (-b) -+ K (X - D), 

v 
which, as usual, can be defined on the level of derived categories. They are 
compatible with products. Unfortunately, they are not quite what one expects 
from Theorem 1.2 (for example) as there appears an annoying factor b!. For 
example if a = b = d we get the inclusion l V~ C V~, multiplied with 
d!. Similarly for cohomology with compact support. Tensor with the ideal J 
defining D to obtain 

a b f(>. b-~ a+b H (x,Jn x/v (dlog 00)) \CI p V (-b) -+;r; (X - D). 
V 

For a = b = d we get the d! times the inclusion l V~ C V~. Poincare 
duality now gives maps the other way 

a+b a b f(>. b-d-~ K (X) -+ H (X,n x/v(dlogoo))\CIP V (-b), 
V 

such that the composition of both maps is d! times (the reader might like to 
reduce this factor to b!· (d - b)!) the inclusion /V~ C /-dV~, tensored 
with Hodge cohomology. This also holds in the derived category. We similarly 
claim the reverse composition 

n ffi a b f(>. b-d-~ -d n K (X -D) -+ W H (X, n x/v (dlog 00)) \CI P V (-b) -+ P K (X -D) 
a+b=n V 
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is equal to d! times the canonical inclusion, at least if D = 0. It follows 
from the fact that our mappings preserve the characteristic class of the diagonal 
XcXxX. 

(c) Let us also recall the extensions 

0-+ R~ -+ E -+ QR/v(dlogoo) ®R~( -I) -+ 0, 

R 

for R = R(V) the affine ring of a small affine V eX. Choose sections 
rPR: QR/V (dlog00) ®R R~(-I) -+ E for the projections. They are neither func-
torial in R nor d-linear. But if we pass over to extensions 

o -+ p -I R ~ -+ E p -+ 0 R/ v (dlog 00 ) ® R ~ ( -1) -+ 0, 

R 

the E/s glue together to a sheaf Ep(V) , and for two open subsets VI and V2 
with intersection V = VI n V2 the difference between the two sections rP R of 
Ep(V) induced by the E's is measured by a map 

H(VI' V2 ): 0R/V (dlog00) ®R~( -I) -+ p -I R~. 
R 

H(VI' V2 ) satisfies the cocycle condition, and it is d(V)-linear modulo R~ . 
Id +H(VI' V2 ) defines a unipotent automorphism of Ep(V) , which relates the 
two E's. 

For any i and V the extensions above define exact sequences 

0-+ Qi-I R/v(dlogoo) ® R~( 1 - i) -+ Ai E -+ Oi R/v(dlogoo) ® R~( -i) -+ O. 
R 

Unfortunately these sequences are not functorial in V but become so if we 
invert p. 

Suppose V. -+ X is a hypercovering by small open affine subsets. We con-
struct a double complex D* (Ai E) with 

Da.b(AiE) = Cb(d(Va),AiE(Va))[l/p). 

where Cb(d(Va) , ... ) stands for the product of the corresponding complexes 
over all connected components of Va' The a-differential is given by the alter-
nating sum of the degeneracies a j * , associated to a j: Va+ I -+ Va' 0 :$; j :$; 

a + 1 . For the b-differential we use the differential on Cb • 

We can perform the analogous construction with Oi. We then obtain an 
exact sequence of double complexes 

o -+ Da.b(Qi-\/v(dlogoo)®R~(I- i)) 
R 

-+ D a .b (Ai (E)) -+ D a .b (Oi X/V (dlog 00) ® R~( -i)) -+ O. 
R 
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It is functorial in the hypercovering U.. The corresponding sequence of con-
necting homomorphisms defines our transformation from Hodge cohomology 
into Jf'* . Now each D a.b has an integral structure as 

ni x/v (dlog00) c ni x/v(dlogoo)[I/ p) 

and Ai(E) c A i(E)[I/p). These integral structures are preserved by the 
b-differentials while the a-differentials on D a .b (Ai (E)) have a factor p -I . The 
connecting homomorphisms are defined by lifting a cycle in 

EB D a .b (ni x/v (dlog00) ® R~( -i)) 
a+b=n R 

to EBa+b=n Da.b(Ai(E)) and applying (da + db)' which gives something in 
EBa+b=n+1 Da.b(ni- I x/v (dlog00) ®R R~(1 - i)) . As only the da-differential in-
duces a denominator, we see that the sequence of i connecting homomor-
phisms applied to a cycle in Do.q(Qix/v(dIOgoo)®RR~(-i)) gives a cycle in 
~ . p-a Da+q.b(R~) 
~a+b=1 . 

Changing by a boundary or using different choices for the liftings leads 
to an indeterminancy in (da + dbHEBa+b=i-1 p-aDa+q.b(R~)}. The maps 
C*(~(U), R~(U)) - C*(~(U), R~(U))/ <cC*(~(U), R~(U)) are functorial and 
both complexes are torsion free. So we also get the corresponding projection 
for the D** -complexes. If we compose the i-fold connecting homomorphism 
with them, we obtain transformations 

Hq(X, niX/V (dlog 00)) ® V~(-i) _l-iJf'q+i / <cJf'q+i(X - D), 
v 

and also the corresponding mod / (divide each complex by /) . The same 
holds for cohomology with compact support, and by duality (q = d - a, i = 
d - b, c = d - n) this corresponds to 

~nJf'm(X -D) - EB Ha(X,nb x/v(dlogoo))®pb-nV~(-b), 
a~=m v 

i.e., first defined modulo /, for all I, and the letting I - 00. Again the 
compositions one way are d! times the natural inclusions, while the other way 
this holds at least if D = 0 . 

(d) As a final result we have shown the following 
3.1. Theorem. Suppose X is proper and smooth over V, D c X a divisor with 
normal crossings (relative V) . 

(i) There exist natural transformations 

EB Hn-b(X,nb x/v(dlogoo))®/V~(-b) - 9Jf'n(X -D). 
O~b~a V 

They are isomorphisms up to p-torsion and respect weight filtrations, and, up to 
some factors, also products, Chern classes, and characteristic classes. They can 
be defined on the level of derived categories. 
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(ii) If dim (X) = d, these maps have left inverses (up to a factor d!· /) 

$aKn(X -D) --+ E9 Hn-b(X,nb x/v(dlogoo))®/-dV~(-b). 
O~b~Q v 
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If D = 0 they are also right inverses (up to d!· /), and in any case this is 
true up to p-torsion, or on the associated graded of the weight filtration. These 
assertions also hold in the derived category. 

(iii) There also exist left inverses (up to d!· pQ) 

~QKn(X-D)--+ E9 Hn-b(X,Qbx/v(dlogoo))®/-QV~(-b). 
O~b~Q V 

They are right inverses under the same conditions as in (ii), but are not defined 
in the derived category. 0 

(e) Some applications. We derive an "algebraic" proof of the degeneration 
of the Hodge-de Rham spectral sequence for compact algebraic manifolds over 
the complex numbers. It suffices to show that the total dimension of singular 
cohomology is equal to that of Hodge cohomology. For this, use the fact that 
the variety is defined over some Z-algebra of finite type and make base change 
to a V satisfying our usual hypotheses. There the assertion holds by (i) above. 

Another application is the Kodaira vanishing theorem. 

3.2. Theorem. Suppose X is proper and smooth over V = W (k) (Witt vectors) 
of pure dimension d < p. If Y is an ample line bundle on X, then 
HQ(X,Y®Qb x ) vanishesfor a+b>d. 

Proof. Suppose first that there exists a smooth hypersurface Y C X with 
19'x(Y) ~ Y. As X - Y is affine, its etale cohomology with compact support 
vanishes in degrees < d. The same holds for ~(X - Y) up to m-torsion. By 
(ii) above there are transformations HQ (X, Y ® nd x) --+ K Q+d (X - Y) whose 
kernel is annihilated by pQ. Thus pQm annihilates HQ(X,Y ®Qd x) ®v V~ , 
and as the annihilator of a nontrivial element in this group contains no p-power 
of exponent less than 1, the assertion follows for b = d. For other values of 
b we use the exact sequence 

b b b-I 0--+ Q x(dlog Y) --+ Y ® Q x --+ Y ® n y --+ 0 

and descending induction over b. 
In general some power yn, n prime to p, has a global section f, which 

defines a smooth hypersurface. Replace X by a finite covering XI --+ X, 
ramified only along Y. XI can be constructed via the algebra E90~i<m y- i 

with multiplication defined by y-m c 19'x' It is smooth over V, and the 
pullback of Y to it satisfies the previous hypotheses. The assertion follows. 0 
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III 
1. Commutative algebra. 

(a) In the case of bad reduction we start with V as before, but now R isjust 
a V -algebra essentially of finite type over V and such that R ®v K is smooth 
over K . As before we can define R as the integral closure of V in the maximal 
etale covering of R ®v K. To study it we now use the concept of bounded 
ramification instead of almost etale. It means that assertions hold up to some 
fixed power pe instead of pt for any e > o. Let us assume that in R there 
exist units u 1 ' ••• ,ud such that the dlog(u j ) form a basis of n R/ v [1/p] over 
R[l/ p], which is equivalent to the fact that the maps V[T/l] - R defined by 
the u j are etale in characteristic o. Our strategy is to compare the big extension 
- . ±l p-n 
R of R to the well-known UDlon Roo of Rn = R ®V[T;±l] v,,[Tj ,Tj ] (v" 
a sequence of extensions of V which kills ramification as before). Our first 
task is to compare Rn to its normalization. 

1.1. Lemma. There exists an e independent of n such that the normalization 
of Rn is contained in p -e Rn . 

Proof. We may assume that R is normal and that the residue field of V is 
±l ±l-n algebraically closed. Let S = V[Tj ], Sn = Vn[Tj ,T/ ], and denote by 

R~ the normalization of Rn = R ®s Sn . As Rn is a free R-module, it satisfies 
the S2-condition, and hence it suffices to prove the assertion after localization 
in a height-one prime p of R containing p (for all other height-one primes 
the localizations of Rn and Rn are equal already). So we may assume that R 
is a discrete valuation ring. 

As Vn is a totally ramified extension of V, after a finite number of steps 
the semilocal rings Wn = normalization of R ®v v" all have the same number 
of maximal ideals and form a sequence of totally ramified extensions. Renum-
bering we may assume that all Wn are local and totally ramified extensions of 
R. If lln denotes uniformizing elements for Wn and 1tn uniformizing ele-
ments for Vn , lln divides 1tm for some m > n. It follows that for some n 
the element d1tn E nWn/R does not vanish. Otherwise, dlln would map to 0 
in n Wm /R ' hence it would vanish as nWn/R - nWm/R is injective. But dlln 
generates nWn/R which is nonzero. 

Now choose an n with d1tn ¥- 0 in n Wn /R . If for m > n the different of 
Vm/Vn is i , it follows that up to units d1tn = i d1tm ¥- 0 in n Wm /R ' hence 
Wm has different at least ph over R. Looking at traces we derive that there 
exists a fixed f such that Wn c p-f(R®v Vn) for all n. Similarly we can 
look at n Rn / Wn . First consider nRn/w)(p-torsion) = nRn/v)(p-torsion) C 
0Rn/V)l/ p] = free Rn[1/ p]-module with basis dlog(u j ). It contains the free 
Rn -submodule with basis p -n dlog( U j). For n big the intersection of this free 
module with the submodule generated by 0R/V is contained in pn-c. (this free 
module), c fixed and independent of n. As Wn = R ®v v" up to bounded 
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p-power, it follows that we may enlarge c such that n contains a sub-Rn/Wn 
quotient (Rn/ pn-c Rn)d , and by the exact sequence 

0--+ nWn/R (8)Rn --+ nRn/R --+ nRn/Wn --+ 0 
Wn 

we see that the different of Rn/ R differs only by a uniformly bounded 
p-power from that of Sn/S, Looking at traces it follows that Rn = R ®s Sn 
up to uniformly bounded p-power. The lemma has been shown. We also have 
derived that for dim(R) = 1 the sequence of extensions Rn kills ramification 
(§I, Theorem 1.2). 0 

(b) Let us call a system of units {u l • •••• ud } E R* good if their logarithmic 
derivatives dlog(u j ) form a basis of nx/v[l/p] and if there exists a fixed power 
pe such that pe . eB/ R is integral for any normal extension (of finite degree) 
B ~ A = Roo (defined as before) which is etale in characteristic O. If such 
a system of units exists, it follows that R is flat over R up to a bounded 
p-power, that is, some fixed power pe annihilates all Torf(R. M) for i > 0 
and any R-module M. This property is transitive for extensions, and it holds 
for R c Roo and Roo c R. We can also define a more restricted notion of a 
good system of units by replacing R by a smaller (infinite) Galois extension C 
of Roo and restricting to subextensions of this smaller extension. For example, 
if R is smooth over V, any system of units u j is good if their logarithmic 
derivatives form a base of nR / v [l/p]. We intend to show that once we have 
one good system of units, we have many. 

1.2. Proposition. Suppose R has one system of good units for some (infinite) 
Galois extension C of R unrami/led in characteristic O. Suppose the units 
u l • •••• ud E R* have the property that their dlog's form a basis of nR/ v [l/ p]. 
and that C contains their p-power roots. Then {u l • •••• ud} is a good system 
of units for C. 

±I ±I -n ~ Proof. Let S = V[Tj ], Sn = ~[Tj . T/ ], Rm = normalization of R in 
the extension generated by Vm and the pm -th roots of the good system of units 
{vI' ...• vd} (whose existence is claimed in the hypotheses), Rm,n (for m ~ n) 
the normalization of Rm ®vn®s Sn' There exists a p-power pe (independent 
of n) such that for each n Rm ,n is flat up to pe over R provided m is 
big enough, This is true for all extensions R c Rm and, for m big, also for 
Rm C Rm ,n' We claim that this assertion also holds for Rm ,n over Rn or, 
equivalently, for Rm ,n over R ®s Sn . 

We want to show that some fixed p-power annihilates TorR®ssn (R • M) , 
I m,n 

any i> 0 and any R®sSn-module M. This holds if M is of the form M = 
N ®s Sn' N an R-module (this is equivalent to the assertion relative to R). 
As any M has an exact resolution 0 --+ M --+ No ®s Sn --+ NI ®s Sn --+ ... , we 
can restrict to indices i > d + 1 = dim(S). Also R[I/ p] is etale over S[I/ p]; 
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some fixed p-power makes eR/ S integral. It follows that R is a projective 
R ®s R-module up to this p-power. Also some fixed p-power annihilates the 
finitely generated R ®s R-modules Tor7 (R, R), i > O. It follows that the 
same conclusion holds for higher Tor's Tor/n (Rm.n ,R ®s Sn) with a p-power 
independent of m and n. Now the functor which sends an R ®s Sn -module 
M to Rm .n ®R®sSn M is the composition of the functor M -+ Rm •n ®Sn M 
and of the tensor product with Rover R ®s R. The left derivatives of the 
first functor are, up to bounded p-power, equal to the Tor/n (Rm •n ,M) as 
those form an exact a-functor and vanish (up to bounded p-power) for M = 
R ®s Sn . Hence these left derivatives vanish for i> d + 1 . The second functor 
is exact, again up to bounded p-power. The assertion now follows easily. 0 

(c) We claim that R m.n , m big, is even faithfully flat over Rn up to a 
p-power independent of n. This means that if a map between Rn -modules 
M induces 0 on Rm .n ® Rn M, then it is annihilated by this p-power. It 
suffices if Rn is a direct summand in R m .n up to bounded p-power. To 
see this we remark that the differents over R of Rm .n (m big) and Rn in 
different height-one primes of R differ only by bounded p-powers, so we 
find a (depending on m) and e (independent of m and n) such that for 
m big i eRm .n/Rn is integral after localizing in height-one primes and such 
that pe-J tr Rm .n/Rn : R m .n -+ Rn is integral. As Rm •n is flat over Rn (up 
to bounded p-power) and as Rn satisfies the S2-condition, we may assume 
that ieRm.n/Rn = EXj ® Yj is integral even before localization. Then r -+ 

pe-J tr Rm .n/RJE xjY/) defines a left inverse of the inclusion Rn C Rm .n up 
to pe . We derive the assertion and also that C is faithfully flat over each Rn 
up to a bounded p-power independent of n. Use transitivity. R C R = n oo,n 
union of all Rm.n C C. In the limit C is also faithfully flat over Roo up 
to a bounded p-power. Finally, if A = Roo c Bee is a normal extension 
of finite degree, unramified in characteristic 0, B is almost unramified over 
Roo after localization in primes of height 1. Hence pt. eB/ A is integral after 
localization for any positive e. As C ® A B is flat over B (up to a bounded 
p-power), pe. eB/A lies in C ® A B for some exponent e independent of B. 
As C is Galois over A, C ® A B[ 1 / p] ~ C[ 1 / p]' decomposes and this in-
duces C ® A B -+ C' with kernel and cokernel annihilated by pe . So C ® A B 
is etale over C up to pe and by faithfully flat descent this also holds for B 
over A. 

(d) Let us now give some applications. 

1.3. Theorem. Suppose that R is a V -algebra of fmite type, geometrically ir-
reducible, such that R has a good system of units u,' ... 'Ud ' for some Galois 
extension C:J R ®v V with group .1. The following assertions hold up to some 
p-power pe. 
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(i) The mappings n R/V ---+ nqv ---+ nqR®v v induce isomorphisms. 

nR/V®C[l/p] ~ n qv ' 
R 

(ii) The sequence 

nR/v®(C[l/p]/C) ~ nqR®vv' 
R 

0---+ nv/v ® C ---+ n qR ---+ nqR®v v ---+ 0 
v 
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is exact and splits as a sequence of C-modules. It defines a functorial d-linear 
extension 

o ---+ p-IC~ ---+ E ---+ nR/ V ® C~(-l) ---+ o. 
R 

(iii) The induced morphisms 

ni R/V ®(R ® V)~( -i) ---+ Hi (d, C~) 
R v 

are isomorphisms. 
- -00 d 

Proof. Replace C and d by (R ®v V)[u/ ] and Zp(l) and compute. 0 

2. Global methods. 
(a) Stable punctured curves. 

2.1. Definition. A stable punctured curve of type (g, t) over an algebraically 
closed field k consists of C, {XI' ... ,Xl}, where 

-C is a proper connected algebraic curve of arithmetic genus g over k, 
with only simple double points as singularities (so C is reduced). 

-{XI' ... ,Xl} is an ordered t-tuple of different k-rational points in the 
smooth locus of X. 

Thus tuple has to satisfy the following conditions. 
(i) If an irreducible component of C is a rational curve, then at least three 

of its k-points are either equal to an Xi' 1 ~ i ~ t , or rational double points 
of C. 

(ii) If an irreducible component of C is an elliptic curve, then at least one 
of its k-points is either an Xi' 1 ~ i ~ t , or one of the rational double points 
of C. 

A family of stable punctured curves over a base B consists of a flat mor-
phism of finite presentation f: C ---+ B together with t sections such that each 
geometric fiber is a stable punctured curve of type (g, t). If C, {XI' '" ,Xl} 
is a stable punctured curve, the line bundle we(oo) (we = dualizing bundle 
= bidual of ne , "00" = simple poles in {x I ' ... ,Xl}) is ample on C, and 
its third power is very ample. It has degree t + 2g - 2 > O. It follows that 
each family f: C ---+ B is projective. Also the deformation theory of a stable 
punctured curve is controlled by the dual we (00)* . As HO ( C , we (00 ) *) = 0, 
C has no infinitesimal automorphisms, and its automorphism group is finite. 



294 GERD FALTINGS 

Also versal deformations exist with tangent space HI(C, we(oo)*) of dimen-
sion 2t + 3g - 3. Finally H 2(C, we (00)*) vanishes, so deformations are un-
obstructed, and the versal deformation has a smooth base. 

2.2. Lemma. If V is a complete discrete valuation ring with fraction field K, 
a stable punctured curve C Kover K can be extended to V after replacing V 
by its normalization in a finite extension of K. This extension is unique up to 
isomorphism. 

Proof. First extend C K to a regular scheme over V such that its special fiber 
is a reduced divisor with normal crossings. This is possible (after extending V) 
by the stable reduction theorem if g > 1 , by the theory of minimal models for 
elliptic curves if g = 1, and by hand if g = O. The sections xi extend to 
V and specialize to smooth points in the special fiber. If two such points are 
equal, we blow up this point. After finitely many steps we are in a situation 
where this does not occur. After that we contract all components pi of the 
special fiber which do not satisfy condition (i) above. The elliptic components 
satisfy (ii) (as t+2g-2 > 0), and we have obtained a stable extension of CK • 

It is unique as all steps can be reversed. 0 

(b) It follows that we can construct a moduli stack Lg ,I for stable punctured 
curves which is proper and smooth over Spec(Z) or any base we prefer to use. 
The details consist in following the arguments of Deligne and Mumford [DM]. 
For example, if t = 1 and g > 0, Lg ,I -+ Lg is the universal stable curve. 
One also shows that in general the total space the universal curve Cover Lg ,I 
is Lg,t+1 (at first glance this might seem surprising), hence it is smooth over 
the base. 

Let us spell out what the notion "stack" means in this context. We have 
given a smooth scheme S and a stable punctured curve C -+ S of type (g, t) 
such that S is versal everywhere or, equivalently, that the tangent space of S 
is isomorphic to the tangent space of the deformation problem. We further 
assume that each stable punctured curve of type (g, t) over an algebraically 
closed field can be obtained by base change from this family. Over S x z S the 
groupoid R = Isom(pr I" (C), pr2" (C)) is representable by a finite unramified 
morphism R -+ S x Z S such that the projections of R onto S are etale. Also, 
if V is a complete discrete valuation ring with fraction field K , any K -rational 
point lifts (after enlarging K and V) along pr I to a K -rational point of R 
whose second projection extends to a V -rational point of S . 

3. Rigid coverings. 
(a) From now on V is a complete discrete valuation ring as usual, with 

fraction field K of characteristic 0 and residue field k perfect of characteristic 
p > O. Let us consider flat V -schemes of finite type. 

3.1. Definition. A V -map f: X -+ Y is called a rigid etale covering if 
(i) The induced map fK: XK -+ YK on generic fibers is etale. 
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(ii) If W is the normalization of V in a finite extension L of K, any 
W -valued point of Y lifts to X after replacing W by its normalization in a 
finite extension of L. 

Examples of rigid etale coverings are proper modifications along the special 
fiber or etale coverings in the usual sense (it even suffices if they cover the 
special fiber). If we restrict to coverings which induce open immersions on the 
generic fiber and if we assume that Y is normal, we can exhibit a cofinal system: 
Replace Y by a proper modification along the special fiber, and denote by X 
the disjoint union of open subsets of Y which cover the special fiber. 

We may assume that X is affine. Factor X - Y as X _ pn X V Y - Y 
such that X is open in its closure in pn x v Y . After proper modification of Y 
we may assume that this closure is a disjoint union of connected components of 
Y so that X is a direct sum of open subsets of Y. These open subsets cover 
the special fiber by condition (ii) above. 

It is also true that any Zariski open covering of YK can be refined to a rigid 
covering. We may assume that Y = Spec(R) is affine. The open covering of 
YK is given by complements of loci of ideals I j C R such that their sum I 
contains a power of p. Blowing up I we may assume that I is generated 
by one element t. Then the complements of the loci of Ij/t define an open 
covering of Y which induces the given covering in the generic fiber. 

(b) Rigid etale coverings satisfy the axioms of a Grothendieck topology. They 
also satisfy cohomological descent for formal cohomology with p inverted as 
follows. Denote the cohomology of formal V -sheaves by H* (X~ ,sr~), etc. 
They can be viewed either as topological V -modules or (which usually is the 
better definition) as projective systems of f7 / V -modules. The assertion below 
will be true in both contexts. 

3.2. Theorem. Suppose f: U. - Y is a rigid etale hypercovering, sr a coherent 
sheaf on X. Then the natural map 

H* (Y~, f~)[l/ p] - H* (U.~, f* (sr)~)[l/ p] 

is an isomorphism. 

Proof. It suffices to treat Cech coverings X - Y. The assertion holds for 
open coverings of the special fiber or for proper modifications (by EGA III). In 
general we use noetherian induction. We may assume that Y is irreducible and 
normal. Replacing it by its normalization in a finite extension of its fraction 
field we may assume that X K is a disjoint union of open subsets of YK • For 
such coverings the assertion holds (we know their structure by (a) above) and 
everything follows easily. 0 

(c) Rigid etale coverings occur in the following context. Suppose CK - YK 
is a stable punctured curve of type (g, t) and that Y is normal. We intend to 
construct a rigid etale covering X - Y and a regular mapping X - S (S the 
scheme occurring in the definition of Lg ,I as S/ R) such that the pullback of 
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CK to XK is isomorphic to the pullback of the universal curve over S. We 
proceed as follows. 

Let X K -+ Y K X K S K denote the scheme which classifies isomorphisms be-
tween the stable punctured curves on both factors. Locally in the etale topology 
(on YK ) it is the pullback of RK , hence it is finite over YK X K SK ' and its 
projection onto YK is etale. Let X denote the normalization of Y X v S in 
X K. We have to show the lifting condition for discrete valuation rings W:::> V . 
A W -valued point of Y defines a stable punctured curve over the fraction field 
L of W . After extending Wand L we may assume that this curve is isomor-
phic to the pullback of the universal curve on S via some W -rational point 
of S. This isomorphism defines an L-rational point of X K which lifts to a 
W -rational point. 

(d) We now can show the main result. 

3.3. Theorem. Suppose R is a V-algebra oJfinite type, smooth in characteristic 
0, which contains a system oj units u t ' ••• ,ud whose logarithmic derivatives 
Jorm a basis oj Q R/ v [1/ p]. Then there exists a rigid etale covering oj Spec( R) 
byaffines Spec(R;) such thatJor each i the units ut ' ••• ,ud E R j Jorm a good 
systemJor the normalization oj R j in the quotient field oJthe maximal extension 
R oj R which is etale in characteristic O. 

ProoJ. Before giving the cumbersome details let us explain the idea. Locally 
Spec(R[I/ p]) is an elementary fibration [Fr, Theorem 11.5/11.6] UK c UK -+ 

WK. Its geometric fundamental group is an extension of that of WK by the 
fundamental group of the geometric fibers of the fibration. The fundamental 
group of WK is handled by induction, and so we are reduced to considering the 
fundamental group of the geometric fibers. For this we use that the elementary 
fibration is pullback of a universal fibration C - {oo} -+ S and that in the 
universal case everything is smooth (and so is covered by what we already know). 
Now the formalities. We use induction over d, d = 0 being the trivial case. 
There exists a Zariski open covering of Spec(R[I/p]) by elementary fibrations 
UK C UK -+ WK such that UK is a smooth proper curve over WK with 
geometrically connected fibers in which UK is the complement of a divisor 
of degree t ~ 3 which is finite etale over WK. Also WK is affine, and its 
geometric fiber is a K (1l , 1) in the etale topology. Refine the covering given by 
these UK'S to a rigid covering of Spec(R) byaffines Spec(Rj). We may choose 
models Wover V for the WK'ssuch thatthemaps Spec(Rj) -+ W are regular. 
After replacing W by its normalization W in a finite etale covering WK of 
WK we may assume that UK C UK is given by a stable punctured curve over 
WK. Over a rigid etale covering of W this curve is pullback of a universal 
curve over some smooth V -scheme S. Hence refining the rigid etale covering 
{Spec(Rj)} we may assume that each Spec(Rj) maps to the total space U of a 
stable punctured curve U C U -+ W , which is pullback under W -+ S of the 
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universal C - { oo} -+ S , and such that in the generic fiber we obtain a pullback 
of the original elementary fibration UK C U K -+ WK . 

As C - {oo} is smooth over V, there exists an open affine covering of it 
such that each affine ring has a good system of units, where in addition all these 
units except one are functions on the base S , that is, they are constant along the 
fibers of C -+ S . Refining the rigid etale covering {Spec(Rin we may assume 
that it maps to this open covering of C - {oo}. By pullback we obtain normal 
extensions of Spec(Ri) which are etale in characteristic 0, and it follows that 
they are etale up to some pe over the extension of Ri generated by V and 
p-power roots of the pullbacks of the units constructed above. As all of them 
except one come from units on W, we may use induction on Wand obtain 
(after refinements) for each Ri a Galois extension, etale in characteristic 0, 
which is etale up to pe over the extension generated by V and the p-power 
roots of a system of d units in Ri . We have to convince ourselves that this 
extension is big enough. It contains the maximal (etale in characteristic 0) 
extension of WK ' as well as the pullbacks of the maximal extensions of the open 
covering of C - {oo}. We may assume that this covering refines a covering of 
SK by K(n, l)'s, and it follows that we also obtain at least the full fundamental 
group of the geometric fibers of UK over WK' By the homotopy sequence for 
UK -+ WK we see that our Galois extension contains at least the maximal etale 
covering of UK' hence also that of Spec( R K)' Finally, we can replace the d 
units in Ri by the chosen units in R, and everything follows. 0 

4. Intermediate cohomology. 
(a) Suppose X is a proper flat V -scheme with smooth and geometrically irre-

ducible generic fiber X K • There exists a rigid covering of X byaffines Spec(Ri) 
such that each R j contains d-units u1 ' ••• ,ud whose logarithmic derivatives 
generate nx/v ® Rj[l/p]. First find an open covering such that nx/v is gen-
erated by logarithmic derivatives of units and then refine it. As in the case of 
good reduction we define presheaves on the rigid etale topos by sending U -+ X 

* I * - I-to C (I1(U),Z/pZ)/>O' respectively C (I1(U),R(U)/pR(U))/>o' They have 
coefficients in the ab;lian category of projective systems of Z; p' Z-modules. 
However, we work modulo bounded p-torsion, that is, we divide by the sub-
category of projective systems which are annihilated by some power of p. In 
the quotient category infinite direct or inverse limits do not exist in general. 
However, if they do exist they are unique up to isomorphism. The associated 
sheaves are p-adic etale cohomology (same proof as before), respectively Hodge 
cohomology. If we fix U, we have for any sufficiently small rigid etale cover 
W of it the canonical extension E(W), which defines (in the derived category) 
a natural transformation 

€anj X/V ®(&'x ® V)~( -i)[-i] -+ C*(I1(U) , R/ p' R)I~O· 
tlx V 

This is a quasi-isomorphism. 
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All in all we have obtained natural transformations 

Hnet(X®K,Qp)-+ EB Ha(X,nbx/v)®v~(-a), 
v a+b=n V 

which preserve cup products, Gal(K / K)-action, characteristic classes of cycles, 
and Chern classes of vector bundles (this is true in the universal case). By now 
familiar arguments (characteristic class of the diagonal) they induce isomor-
phisms 

Hnet(X®K,Qp)®K~~ EB Ha(X,nbx/v)®K~(-a). 
v Qp a+b=n V 

The result extends to X which are not geometrically irreducible. Note also 
that the transformation is even compatible with transformations f: X K -+ YK 
which do not extend to a regular map X -+ Y . 

(b) We can extend to the open case by a method different from the previous 
one. Suppose X is again proper over V, D c X a divisor, such that over 
K we obtain the familiar situation (X smooth, D normal crossings). We first 
assume that all irreducible components Di of D, as well as of finite intersec-
tions of D/s, are geometrically irreducible over K. If Xn ' n 2 0, denotes 
the disjoint union of intersections of n different Di' we obtain natural maps 
Xn+l -+ Xn which satisfy the rules for the degeneracies of a simplicial object. 
If for each n we choose a rigid etale hypercovering Un. -+ Xn such that the 
transformations above extend, we get double complexes C* (Ll(Un.) , Z/ /Z)/>O' 

* - /- -respectively C (Ll(Un.},R(Un.)/p R(Un.))/>o' and a natural map from the first 
to the second. Passing over to the limit over all systems of hypercoverings Un. 
we obtain etale cohomology of (X - D) ®v K with compact support, respec-
tively Hodge cohomology with compact support. The corresponding transfor-
mation is an isomorphism as this is true for all Xn ' and we have a familiar 
(weight-) spectral-sequence. By duality we also obtain an isomorphism for or-
dinary cohomology. These are natural transformations for maps f: Xl -+ X 2 

with DI ::J f- I(D2). Factor into Xl C Xl X X 2 -+ X 2 • The projection from 
the product is easy to treat, so we can concentrate on the injection j of the 
graph. Here everything follows as the transformations respect the characteristic 
class of this graph in the cohomology of Xl x X 2 • The kernel of j* consists 
of elements which have cup product 0 with this characteristic class, and the 
cohomology of Xl x X 2 is the direct sum of this kernel and the image of pr l * 
(pr l = first projection). 

(c) Let us collect all information. We remark that by a theorem of Nagata 
any proper X over K extends to V. 

4.1. Theorem. Suppose X is a smooth proper K -scheme, D C X a divisor with 
normal crossings. Then there are Gal(K / K)-lineaar isomorphisms 

H n et((X - D) ®K ,Qp) ®K~ ~ EB Ha(X, nb x/v (dlog00)) ®K~(-a). 
K Qp a+b=n K 

They are natural transformations. 
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