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1. INTRODUCTION 

A rotation in a binary tree is a local restructuring of the tree that changes 
it into another tree. One can execute a rotation by collapsing an internal edge 
of the tree to a point, thereby obtaining a node with three children, and then 
re-expanding the node of order three in the alternative way into two nodes of 
order 2. The rotation distance between a pair of trees is the minimum number 
of rotations needed to convert one tree into the other. The problem addressed 
in this paper is: what is the maximum rotation distance between any pair of 
n-node binary trees? We show that for all n ~ 11 this distance is at most 
2n - 6 and that for all sufficiently large n this bound is tight. Culik and 
Wood [2] showed that the maximum rotation distance is at most 2n - 2. Tom 
Leighton (private communication) showed that there exist trees whose rotation 
distance is at least 7 n /4- 0 ( 1) . Pallo [7] proposed a heuristic search algorithm 
to compute the rotation distance between two given trees. 

Our interest in this problem stems from our attempt to solve the dynamic 
optimality conjecture concerning the performance of splaying [8, 10]. Splaying 
is a heuristic for modifying the structure of a binary search tree in such a way 
that repeatedly accessing and updating the information in the tree is efficient. 
Although our solution to the problem of maximum rotation distance did not 
resolve the conjecture about splaying, the results in this paper are interesting 
for at least two other reasons. First, the combinatorial system of trees and their 
rotations is a fundamental one that is isomorphic to other natural combinatorial 
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systems. Results concerning this system are of interest from a purely mathemat-
ical point of view. Second, the method we use to solve the problem is novel and 
interesting in its own right and can potentially be applied to related problems. 

A system that is isomorphic to binary trees related by rotations is that of 
triangulations of a polygon related by the diagonal flip operation. This is the 
operation that converts one triangulation of a polygon into another by removing 
a diagonal in the triangulation and adding the diagonal that subdivides the 
resulting quadrilateral in the opposite way. This type of move was studied 
by Wagner [14] in the context of arbitrary triangulated planar graphs and by 
Dewdney [3] in the case of graphs of genus one. They showed that any such 
graph can be transformed to any other by diagonal flips, but did not try to 
accurately estimate how many flips are necessary. 

Our approach to solving the rotation distance problem is based on the ob-
servation that any sequence of diagonal flips converting one triangulation of 
a polygon into another gives a way to dissect (into tetrahedra) a polyhedron 
formed from the two triangulations. Using hyperbolic geometry, we construct 
polyhedra that require many tetrahedra to triangulate them. (Here and here-
after we use the word "triangulation" in a general sense meaning a dissection 
into simplices of appropriate dimension. A more rigorous definition is given 
in §2.4.) These polyhedra can be used to exhibit pairs of n-node trees (for all 
sufficiently large n) such that the rotation distance between them is 2n - 6 . 

In §2 we define the problem on trees, make the connection between trees and 
triangulations of a polygon, and show that sequences of diagonal flips are related 
to triangulations of polyhedra. In §3 we show how to use hyperbolic geometry 
to obtain a lower bound on the number of tetrahedra required to triangulate 
any polyhedron. We then construct particular polyhedra that require many 
tetrahedra to triangulate them. §4 contains remarks and some open problems. 

2. DEFINITIONS AND EQUIVALENCES 

2.1. Binary trees. A binary tree is a collection of nodes of two types, external 
and internal, and three relations among these nodes: parent, left child, and right 
child. Every node except a special one called the root has a parent, and every 
internal node has a left and a right child. External nodes have no children. A 
tree is said to be of size n if it has n internal nodes. A tree of size n has n + 1 
external nodes. (See [5,10] for a more complete description of binary trees and 
tree terminology.) The number of steps required to walk from the root of the 
tree to a node is the depth of that node. (Each step moves from a node to one 
of its children.) 

A symmetric order traversal of the tree visits all of the nodes exactly once. 
This order can be described by a recursive algorithm as follows: If the node is an 
internal node, traverse its left subtree in symmetric order, visit the node itself, 
then traverse its right subtree in symmetric order. If the node is an external 
node, merely visit it. The order in which the nodes are visited is called the 
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rotation at X • 
rotation at Y • 

rotation at e • 
rotation at b • 
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FIGURE 1. (a) The general definition of a rotation. Tri-
angles denote subtrees. The tree shown could be part 
of a larger tree. (b) A rotation in a seven node tree. 
External nodes are not shown. 

symmetric order permutation of the nodes (or simply the symmetric order of 
the nodes). 

In a common computer-related application of binary trees the tree is used 
to store an ordered collection of pieces of information (called items). Each 
internal node of the tree is labeled with an item, and the order of the items is 
represented by the symmetric order of the nodes. 

A rotation is an operation that changes one binary tree into another. In a 
tree of size n there are n - 1 possible rotations, one corresponding to each 
nonroot internal node. Figure 1 shows the general rotation rule and the effect 
of a particular rotation on a particular tree. The rotation corresponding to a 
node changes the structure of the tree near that node, but leaves the structure 
elsewhere intact. A rotation maintains the symmetric order of the nodes, but 
changes the depths of some of them. Rotations are the primitives used by most 
schemes that maintain "balance" in binary trees [5, 10]. 

A rotation is an invertible operation; that is, if tree T can be changed into 
T' by a rotation, then T' can be changed back into T by a rotation. The 
rotation graph for trees of size n (denoted RG(n)) is an undirected graph with 
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2 

IAI + 1 
sides 

FIGURE 2. An example of a tree and its corresponding 
triangulation. 

FIGURE 3. A diagonal flip in a triangulation of an oc-
tagon. 

IBI + 1 
sides 

one vertex for each tree of size n and an edge between vertices T and T' if 
there is a rotation that changes T into T'. 

Any binary tree of size n can be converted into any other by performing an 
appropriate sequence of rotations. Therefore the rotation graph is connected. 
We can define the rotation distance between two trees as the length of the shortest 
path in the rotation graph between the two trees, i.e. the minimum number of 
rotations required to convert one tree into the other. The main problem we 
address in this paper is that of estimating the diameter of RG(n), i.e., the 
maximum rotation distance between any two n-node binary trees. 
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2.2. Polygon triangulations. Problems concerning rotation distance can be for-
mulated with respect to a different system of combinatorial objects and their 
transformations. This alternative formulation is perhaps more natural and also 
seems to supply more insight. 

Suppose we are given a binary tree T of size n. Take a collection of triangles 
indexed by the internal nodes of T. Now glue the triangles together along their 
edges according to the pattern of the tree, i.e., according to the parent-child 
relation. The resulting surface is homeomorphic to a disk. In fact, we can 
choose a standard convex (n + 2)-gon and choose one of its edges to be the 
"root" edge. Label the n vertices of the (n + 2)-gon that are not endpoints of 
the root edge by the n internal nodes of T, counterclockwise in symmetric 
order. Now the triangles can be inductively mapped into the (n + 2)-gon by 
gluing one edge of each triangle to the appropriate edge of its parent triangle 
and sending the remaining vertex to the vertex labeled by its node. As a special 
case, the root triangle is attached to the root edge and the root vertex. See 
Figure 2. 

In this way, we obtain a 1-1 correspondence between binary trees and trian-
gulations of the (n + 2)-gon with no interior vertices. We refer to the n + 2 sides 
of the polygon as edges and the chords that divide it into triangles as diagonals. 
Any triangulation of the (n + 2)-gon has n - 1 diagonals and n triangles. We 
regard the polygon as having a distinguished edge and orientation. 

A diagonal flip is an operation that transforms one triangulation of a polygon 
into another. The effect of a diagonal flip is shown in Figure 3 and can be 
described as follows: A diagonal inside the polygon is removed, creating a face 
with four sides. The opposite diagonal of this quadrilateral is inserted in place 
of the one removed, restoring the diagram to a triangulation of the polygon. 

Let TG(n + 2) be a graph with one node for each triangulation of an 
(n + 2)-gon and an edge between two nodes if the two nodes are related by 
a diagonal flip. We see that 
Lemma 1. The graph TG(n + 2) is isomorphic to the rotation graph RG(n). 

The proof of this lemma is a straightforward application of the correspon-
dence described above. A more detailed discussion of the relationships between 
trees, triangulations, and Catalan numbers can be found in Chapter 20 of [4]. 
2.3. Results of polygon triangulations. As we saw in §2.2, a study of the rotation 
distance between trees can be formulated as a study of the distance between 
triangulations under the diagonal flip operation. Let d«], <2) be the minimum 
number of diagonal flips needed to transform triangulation <] into triangulation 
<2' For convenience, we shall now change our use of the variable" n." We 
consider triangulations of an n-gon and let d (n) be the maximum distance 
between any pair of such triangulations. That is, d (n) is the diameter of TG (n) 
or equivalently of RG(n - 2). Figure 4 shows TG(6), whose vertices are the 
fourteen triangulations of a hexagon. The greatest distance between a pair of 
triangulations is four; there are several pairs that achieve this distance. 
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FIGURE 4. The rotation graph of a hexagon, RG(6). 

The added symmetry revealed in the triangulation system that is hidden in 
the binary tree system enables us to improve Culik and Wood's upper bound on 
d (n) from 2n - 6 to 2n - 10 . 

Lemma 2. d(n):::; 2n - 10 for all n> 12. 

Proof. Any triangulation of an n-gon has n - 3 diagonals. Given any vertex 
x of degree deg(x) < n - 3, we can increase deg(x) by one by a suitable flip. 
Thus in n-3-deg(x) flips we can produce the unique triangulation all of whose 
diagonals have one end at x. It follows that given any two triangulations " and 
'2 we can convert " into '2 in 2n-6-deg,(x)-deg2(x) flips, where x is any 
vertex and the degree of x is deg, (x) in " and deg2 (x) in '2' The average 
over vertices x of deg, (x) is 2 - 6/n, and of deg, (x) + deg2(x) is 4 - 12/n . 
It follows that if n> 12, there is a vertex x such that deg, (x) + deg2 (x) ~ 4. 
o 

The following lemma about sequences of diagonal flips shows that in some 
situations it is easy to find the first flip in an optimal sequence of flips. 

Lemma 3. (a) If it is possible to flip one diagonal of " creating ,; so that ,; 
has one more diagonal in common with '2 than does '" then there exists a 
shortest path from " to '2 in which the first flip creates ,;. (b) If " and '2 
have a diagonal in common, then a shortest path from " to '2 never flips this 
diagonal. In fact, any path that flips this diagonal is at least two flips longer than 
a shortest path. 

Proof. Let S be a sequence of adjacent triangulations connecting " to '2' 

S=to(="),t,,t2, ... ,tk (='2)· 
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Assume that tl =j::. ,; • We shall construct a new sequence of adjacent triangula-
tions Sf also connecting 'I and '2 whose length is no longer than the length 
of S and in which the first flip creates ,; . This will suffice to prove (a) of the 
lemma. 

Let I and r be the endpoints of the diagonal that < and '2 have in common 
but 'I and '2 do not have in common. Any triangulation , can be normalized 
with respect to the diagonal (l, r) to create a new triangulation N (,). The 
diagonals of N (,) are of three types: (1) N (,) contains the diagonal (l, r) , 
(2) N(,) contains every diagonal of , that does not cross the diagonal (l, r) 
(two diagonals with an endpoint in common are not said to cross), (3) if , 
contains a diagonal (a, b) that crosses the diagonal (l, r) then N (,) contains 
the diagonals (a, r) and (b, r). (See Figure 5.) 

t N(t) 

FIGURE 5. A triangulation , and its normalized version 
N(,) . 

Consider the sequence of triangulations 

A straightforward case analysis shows that successive triangulations of this se-
quence are either identical or adjacent. Eliminating all but one of each group of 
identical consecutive triangulations in this sequence gives the desired sequence 
Sf . A priori Sf might contain k + 2 triangulations, but this cannot be the case 
for the following reason. Consider the triangulations ti and ti+1 in S with 
the property that ti does not contain diagonal (l, r) and ti+1 does. (There 
must be such a pair since the final triangulation contains the diagonal (l, r) 
and the initial one does not.) It is easily verified that the triangulations N(ti) 
and N(ti+l) must be equal, and therefore occur only once in Sf. Thus Sf 
contains at most k + I triangulations. Verifying that Sf starts and ends with 
'I and '2' and that its second triangulation is <, is straightforward. This 
completes the proof of (a) of the lemma. 
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The same technique serves to prove (b) of the lemma. Let S = to (= r I) , 
t l , '" ,tk (= r 2 ) be a sequence that transforms r l into r 2 in which the first 
move is one that flips a diagonal (l, r) common to both r l and r 2 • Normalize 
this sequence with respect to the diagonal (l, r) and eliminate redundancies to 
create a sequence S' . Then S' transforms r I into r 2 in two fewer flips than 
does S. The reason is that neither the first flip of S , which misaligns (l, r) , 
nor a later flip that aligns (l, r) , occurs in S'. 0 

A refinement of the lower bound proof in Lemma 2 for small values of n 
and a computer search have produced the exact values of d (n) for n ::; 18, 
which appear below. 

n 3456789 10 11 12 13 14 15 16 17 18 
d(n) 0 2 4 5 7 9 11 12 15 16 18 20 22 24 26 

2.4. Simplicial complexes. This section is a digression into the notation and 
terminology of simplicial complexes. Although we will apply these concepts 
in at most three dimensions, we have developed them in full n-dimensional 
generality. The sole purpose of this and the next section is to develop tools 
required to prove Lemma 7. At the end of §2.5 is an example that illustrates 
many of the concepts about to be introduced. 

An n-simplex is the n-dimensional generalization of a triangle. It has n + 1 
vertices and n + 1 faces each of which is an n - I-simplex. The simplex can 
be thought of as a list of the names of its vertices (in sorted order by vertex 
name). 

A simplicial complex K is the union of a collection of simplices of assorted 
dimensions, called cells. Whenever Q is an n-simplex in the collection and P 
is a k -face of Q, then P is also in the collection. The intersection of any two 
simplices in the collection is also a simplex in the collection. The dimension of 
K is the maximum dimension of a simplex of K. The k-skeleton Kk of K 
is the union of the simplices of dimension not exceeding k, with its inherited 
structure as a simplicial complex. 

A triangulation of a space X is a simplicial complex K and a map J from 
simplices onto X such that the images of the simplices in X intersect exactly 
as they do in K . 

An orientation for a k-simplex is an ordering of its vertices. An oriented 
simplex thus consists of a sorted list of the names of its vertices, in addition to 
a permutation of its vertex names. The orientation is said to be positive if the 
permutation of the vertices is an even permutation, and negative otherwise. 

Associated with a simplicial complex K of dimension n is a collection of 
vector spaces Ck (K) , for 0 ::; k ::; n, where Ck is defined to consist of finite 
formal linear combinations of oriented k-simplices of K with real coefficients, 
subject to the relation that two oriented k-simplices whose orientations differ 
by a single inversion are negatives of each other. Elements of Ck are called 
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k-chains of K. Using the above relation we can reduce a k-chain to an equiv-
alent one in which each simplex of K occurs at most once. 

The boundary map 
ok: Ck --+ Ck _ 1 , 

is a linear map from k-chains to (k - 1 )-chains. Because it is linear, its value 
on an arbitrary k-chain is a linear combination of its values on each simplex 
of the given k-chain. The boundary map is defined on an oriented simplex to 
be its oriented boundary: to determine the orientation on a (k - 1 )-face P of 
a k-simplex 0:, choose an ordering of the vertices of 0: compatible with the 
orientation and such that the vertices of P come last. The induced ordering of 
the vertices of P is the correct orientation. As a special case, we define °0 as 
a trivial map to a trivial vector space consisting of 0 alone. 

Elements of the kernel of ok (that is, chains whose boundary is 0) are called 
k-cycles. The image of 0k+l automatically is contained in the kernel of ok 
because the boundary of a simplex is a cycle. (Elements of this image are called 
k-boundaries. The quotient space of k-cycles by k-boundaries is called the kth 
homology of K, Hk(K ;R). This does not depend on the structure of K as a 
simplicial complex, but only on the underlying space of K .) 

A k-simplex is said to be geodesic if it is contained in an affine k -dimensional 
subspace of R n (but not in any (k -1 )-dimensional subspace of R n ), and all of 
its (k - 1 )-faces are also geodesic, A map f is said to be affine on a k -simplex 
if the image of the simplex under f is geodesic, 

Let f be an affine map that maps an n-simplex s into an n-simplex s' in 
R n . We may assume that the domain of f is simplex s, placed in R n in the 
canonical fashion. (The canonical placement of an n-simplex in R n is obtained 
by taking the convex body formed by convex combinations of the origin and 
the n unit vectors. To label the canonical placement, place the labels in sorted 
order on the origin, then on each of the unit vectors of R n respectively.) Each 
vertex of s' may be labeled according to which vertex of s is mapped to it by 
f. The map f is said to be orientation preserving if the canonical placement of 
s in R n can be transformed to s' via a continuous family of affine embeddings 
of s in R n so that the labels on the vertices match. If this is not possible, then 
f is said to be orientation inverting. 

2.5. The volume of an (n - 1 )-cycle. We shall now develop the tools necessary 
to define the volume of an (n - 1 )-cycle embedded in R n , 

Suppose that we have a simplicial complex K, an n-chain c in Cn(K) , and 
a map f of K into R n that is affine on each simplex. Choose a basis 0: I ' 

0:2 , ••• of Cn(K) such that the orientation of O:i is positive if f is orientation 
preserving on 0: i ' and negative otherwise. (This definition of orientation has the 
property that all the basis simplices have the "same" orientation. For example, 
if we are working in two dimensions, then the orientation of each triangle is 
either clockwise or counterclockwise, and in this case our basis has the property 
that all the basis triangles are counterclockwise.) 
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This data determines a certain step function degree (c, f) on R n , as follows. 
Write c = La/xi' First suppose that x is any point in R n which is not in 
the image of the n - I skeleton of K. To compute the degree at x, we add 
the coefficients of the simplices whose image contains the point x. If x is in 
the image of the n - I skeleton, we define degree (c , f) (x) to be the maximum 
value of the degree that occurs in arbitrarily small neighborhoods of x. 

The degree map we have defined satisfies the following lemma, which makes 
it useful in defining volumes. 

Lemma 4. If c is an n-cycle in a simplicial complex K, then degree (c, f) = O. 
Furthermore if d and e are any chains such that ad = ae , then degree (d ,f) = 
degree( e , f) . 

Proof. The degree function degree (c ,f) is constant everywhere except possibly 
in the image of the union of the boundaries of the O:i' We shall first show that 
crossing these boundaries also leaves this function constant. Let 0: and 0:' be 
two simplices from the basis that have a boundary simplex fJ in common. If 
0: and 0:' are mapped by f to the same side of fJ then the coefficient of fJ 
in ao: is the same as the coefficient of fJ in ao:'. If 0: and 0:' are mapped 
to opposite sides of fJ, then the coefficients are negatives of each other. Since 
c is a cycle, the boundary vanishes, so the coefficient of fJ in the boundary is 
zero. Therefore the sum of the coefficients in c over those n-simplices that 
map to one side of fJ equals the sum of the coefficients in c over those that 
map to the other. This shows that the degree is the same on both sides of fJ . 

If f is a generic map (where f does not have degeneracies, such as map-
ping several (n - I )-simplices to the same place) this is enough to show that 
degree (c, f) is continuous everywhere (and therefore constant). This is because 
in this case one can get from any generic point to any other generic point only 
crossing the image of a single (n - I )-face at a time. Since the degree is zero 
near infinity, the degree must be zero everywhere. In the general case, when f 
might not be generic, f can be perturbed a little, without changing the degree 
at most points. The degree for the perturbations must be identically zero, so 
degree (c ,f) = 0 in this case as well. 

As for the second assertion of the lemma, if d and e are chains such that 
ad = ae, then d - e is a cycle, so by the first part of the lemma 
degree (d - e, f) = O. Because the degree operator is linear, degree (d, f)-
degree (e , f) = degree( d - e, f) , which gives the result. D 

If z is an n - I cycle in a simplicial complex K, and if f is a map of 
K into R n , it is always possible to enlarge K to a simplicial complex K' in 
which there are chains c for which z = ac. The easiest way is to define K' 
as the cone on K; that is, K' has one more vertex v than K, and for each 
simplex 0: of dimension k there is an additional (k + I)-simplex with one 
face on 0: and its extra vertex at v. The map of K into R n easily extends 
to a map of K' determined by choosing where to send v. Now consider the 
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map degree (c , f). Lemma 4 tells us that this step function only depends on 
z, not on the way z is expressed as a boundary. Thus we can rewrite it as 
w(z, f)(x) = degree(c, f)(x) and call it the wrapping number of z about x. 
The algebraic volume enclosed by f(z) is defined to be the integral of the 
wrapping number. 

A special case that will become important later is the volume of a three-
dimensional polyhedron. A triangulation a of the sphere is a way to dissect 
the sphere into curvilinear triangles. Each such a has a fundamental 2-cycle, 
defined to be the sum of the triangles of a with orientation coming from the 
counterclockwise ordering of the yertices (when looking at the sphere from the 
outside). If f maps the sphere into R3 in such a way that each simplex of a 
is geodesic, then we define the volume enclosed by f to be the volume enclosed 
by the fundamental 2-cycle of a . 

Figure 6 illustrates a simplicial complex K with 15 simplices: (123), (234), 
(235), (12), (13), (23), (24), (34), (35), (25), (1), (2), (3), (4), (5). 
(Here the numbers between brackets are the vertices of the simplex in sorted 
order.) The way these are mapped into R2 by a map f is shown in (a) of the 
figure. The canonical imbedding of simplices (123), (234), and (235) into 
R2 is shown in (b). The map f is orientation inverting on simplices (123) 
and (234), and orientation preserving on simplex (235). 

To define the degree of f, we could use the following basis for C2 (K): 0'1 = 
(123)(132), 0'2 = (234)(243), 0'3 = (235)(235). (The permutation for an 
oriented simplex is shown in parentheses after the sorted vertex list of the sim-
plex.) Other bases are possible; for example, we could have chosen 0'1 to be 
(123)(321) . 

Let c be the chain -(123)(132) + (234)(243) + 2(235)(235). Part (c) of 
Figure 6 shows the value of degree(c, f) in R2 . Note that 

8(123)(132) = (12)(21) + (13)(13) + (23)(32), 

and 

8c = (12) (21)+ (13)( 13) + (34) (34) + (24) (42) + 2(23) (23) + 2(35)( 35) + 2(25)( 52). 

2.6. Triangulations of the sphere and the ball. In this section we show that 
the quantity d (n) is related to the number of tetrahedra that are required to 
triangulate certain polyhedra. 

Let a be a triangulation of the sphere and let z be a fundamental 2-cycle 
of a. Then T is an exposed triangulation of the ball extending a if (1) T 
is a triangulation of the ball, (2) there exists a 3-chain c in C3(T) such that 
z = 8c and all the coefficients of care ± 1 , and (3) all of the vertices of T 
occur as vertices in a. The 3-chain c satisfying this definition in unique. 

An exposed triangulation of the ball extending a is the three dimensional 
analogue of a triangulation of an n-gon described in §2.2. In contrast to the 
situation in two dimensions, there are generally triangulations extending a con-
taining different numbers of tetrahedra. Although it happens to be true that 
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4 

(b) 

(c) 

4 

FIGURE 6. (a) shows the way a simplicial complex with 
fifteen simplices is mapped by a map f into R2. (b) 
shows the canonical imbedding of simplices (123), 
(234) , and (235) into R2 . (The map f is orientation 
inverting on simplices (123) and (234), and orienta-
tion preserving on simplex (235).) (c) shows the value 
of degree (c, f) in R2 . 

every triangulation of S2 is homeomorphic to a triangulation with geodesic 
faces, the situation is quite different from exposed triangulations of the ball: 
it is even possible to construct examples with knotted edges, so that they are 
forcibly curvilinear. 

The union of two triangulations '1 and '2 of an n-gon, glued along their 
boundary, usually gives a triangulation of the sphere, which we denote by 
U('I' '2)' (There are certain degenerate cases in which the union does not 
satisfy the definition of a simplicial complex. This happens if '1 and '2 have 
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a diagonal in common. Nonetheless, U(r" r 2 ) describes a triangulation of a 
slightly more general sort, which we shall not discuss.) 

For any a there is an exposed triangulation of the ball extending a. This al-
lows us to define t (a) to be the minimum number of tetrahedra in any exposed 
triangulation of the ball extending a. The following lemma relates triangula-
tions to rotation distance. 

Lemma 5. If r 1 and r 2 have no diagonal in common, then 

t(U(r" r 2)) ~ d(r" r 2). 

Proof· There exists a sequence of d (r, ' r 2) diagonal flips that changes r, into 
r 2 • We shall describe how to extract from this sequence an exposed triangula-
tion of the ball extending U (r, ' r 2) containing d (r, ' r 2) tetrahedra. 

Imagine that there is a planar base with triangulation r, drawn on it. Suppose 
the first diagonal flip replaces diagonal (a, c) with diagonal (b, d). Create a 
flat quadrilateral that is the same shape as quadrilateral (a, b, c ,d). On the 
back side of the quadrilateral draw diagonal (a, c) . On the front draw diagonal 
(c, d). Now place the quadrilateral onto the base in the appropriate place with 
diagonal (a, c) down and (b, d) up. Looking at the base we see a picture of 
a triangulation which is the result of making the first diagonal flip. For each 
successive move we create another quadrilateral and place it onto the base. After 
placing d(r" r 2 ) such quadrilaterals we will see r 2 when we view the base. 

The triangulation of the ball that we construct has one tetrahedron for each 
quadrilateral. The tetrahedra are glued together according to the way the quadri-
laterals are stacked. Two triangles are identified with each other if they face 
each other in the stack of quadrilaterals. 

To finish the proof we need only verify that the resulting triangulation is an 
exposed triangulation of the ball extending U(r" r 2). The fact that it is a trian-
gulation of the ball is made clear by inflating each quadrilateral so that it turns 
into a tetrahedron. The resulting collection of tetrahedra is homeomorphic to a 
ball. (This is where we use the assumption that r, and r 2 have no diagonal in 
common.) The fact that the triangulation extends U (r, ' r 2) is obvious because 
the boundary triangles are exactly those of r, and r 2 . 0 

What the proof of Lemma 5 tells us is that for every sequence of diagonal 
flips from r, to r 2 there is an exposed triangulation of the ball extending 
U (r, ' r 2)' In fact, the same triangulation of the ball may result from many 
different sequences of moves from r, to r 2' It is not the case that every 
exposed triangulation of the ball extending U (r, ' r 2) comes from a sequence 
of diagonal flips. In fact, it is possible to construct exposed triangulations of 
the ball with the property that no tetrahedron touches the boundary on more 
than one face, whereas in a triangulation obtained by the construction in the 
proof of Lemma 5 some tetrahedra touch the boundary on at least two faces. 

Let t(n) be the maximum of the quantity t(a) over all n-vertex four-
connected triangulations a of the sphere. (A triangulation is said to be 
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k-connected if its I-skeleton, regarded as a graph, is k-connected. An undi-
rected graph is k-connected if deletion of any k - 1 vertices leaves the graph 
connected. ) 

Lemma 6. t(n) ~ d(n). 

Proof. Let a be an n-vertex four-connected triangulation of the sphere such 
that t( a) is maximized. By a theorem of Hassler Whitney [15] or its gener-
alization, Tutte's Theorem [13], any four-connected triangulated planar graph 
must have a Hamiltonian circuit. Draw the triangulation on a sphere. Cut the 
sphere along the edges of the Hamiltonian circuit. This separates the sphere 
into two disks, each of which is triangulated. Let these two triangulations be 
r I and '2 . Now a = U ( 'I ' '2)' By the preceding discussion and Lemma 5, 

t(n) = t(a) = t(U('I' '2)) ~ d('l' '2) ~ d(n). 0 

To make these concepts more concrete, consider the two triangulations 'I 
and '2 of a hexagon whose diagonals form a triangle. (See Figure 7.) The 
triangulation obtained by gluing 'I and '2 together is the boundary of the 
octahedron. There are six paths of length four between 'I and '2 (see Figure 
4). Each of these paths gives rise to a triangulation of the octahedron. Three 
different triangulations of the octahedron are obtained in this way. (Each is 
produced by two different paths from 'I to '2') These triangulations are the 
ones in which a single edge has been added between a pair of opposite vertices. 
The octahedron cannot be triangulated with fewer than four tetrahedra because 
no tetrahedron can contact more than two faces of the boundary. 

(1 3 S 6) (1236) (634 S) (6234) 

3 

6 

The four tetrahedra: 361 S. 3621. 3642. 36 S 4 

FIGURE 7. A sequence of diagonal flips and the corre-
sponding triangulation. 
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By Lemma 6, an upper bound on d(n) is an upper bound on t(n), and a 
lower bound on t (n) is a lower bound on d (n). In the remainder of this paper 
we show that 2n - 1 0 ~ t (n) for all sufficiently large n. Combining this with 
Lemma 2 gives t(n) = d(n) = 2n - 10 for all sufficiently large n. 

3. LOWER BOUNDS ON t(n) 
Our approach to deriving accurate lower bounds on t (n) is geometric rather 

than combinatorial. We convert the combinatorial objects described in the pre-
vious section into geometric objects. We then infer properties of the combina-
torial objects from the properties of the geometric objects. The following two 
paragraphs summarize our approach. 

Let (J be an n-vertex triangulation of the sphere that is four-connected. 
Suppose (J is the boundary of a polyhedron P in R3 such that the vertices 
of P are on the unit sphere. Let T be an exposed triangulation of the ball 
extending (J. For each tetrahedron d of T there is a geodesic tetrahedron 
d' whose vertices are the appropriate vertices of P. The sums of the volumes 
of these geodesic tetrahedra must be at least the algebraic volume enclosed by 
P. Let Vd be the volume of the largest tetrahedron that can be inscribed in a 
sphere. Let vol(P) be the volume of P. We conclude that at least vol(P)jVd 
tetrahedra are required to cover P. In other words: 

vol(P) () 
-v-~tn. 

d 

In Euclidean space, this inequality does not give interesting bounds because 
the ratio of the volume of a sphere to the volume of the largest tetrahedron 
inscribed in the sphere is a small constant. In hyperbolic space, however, this 
method does lead to useful results. This is because in hyperbolic space the 
volume of a tetrahedron is bounded above by a constant Va, while the volume 
of a polyhedron can grow linearly as a function of the number of vertices. Our 
problem is thus reduced to finding a polyhedron P with n vertices in hyperbolic 
space that has large volume. 

First we present the necessary fundamentals of hyperbolic geometry. These 
ideas are described in more detail in Coxeter's book [1], Milnor's paper [6], and 
an expository article by Thurston and Weeks [11]. 

3.1. Hyperbolic geometry. In hyperbolic geomerty there are many lines through 
a given point parallel to a given line, the sum of the angles of a triangle is less 
than 180 degrees, and the circumference of a circle is greater than n times the 
diameter. There are various ways of mapping hyperbolic space into Euclidean 
space. These mappings enable us to draw pictures on Euclidean paper of hy-
perbolic polygons, but these pictures are distorted; two congruent hyperbolic 
triangles may not look congruent when mapped into Euclidean space. 

One mapping of two-dimensional hyperbolic space into the Euclidean plane 
is called the upper half-plane model. In this model all of hyperbolic space is 
mapped into the upper half of the complex plane (the points with positive 
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imaginary parts). This mapping is conformal, which means that angles are 
preserved. The geodesics (straight lines) in hyperbolic space are mapped into 
the semicircles with centers on the real axis and the vertical half lines with ends 
on the real axis. Most of the area of hyperbolic space is mapped into the region 
near the real axis. See Figure 8. 

an ideal hexagon an ideal triangle a triangle 

FIGURE 8. The upper half-plane model of two-dimen-
sional hyperbolic space. 

The area of a triangle in hyperbolic space is 7l - L, where L is the sum of 
the internal angles. An ideal triangle is one with three distinct vertices on the 
real axis or at infinity. All ideal triangles have area 7l. In fact all ideal triangles 
are congruent, that is, any ideal triangle can be transformed to any other by a 
rigid motion. (The rigid motions of the space form a group known as the group 
of orientation-preserving isometries.) 

The upper half-space model of three-dimensional hyperbolic space consists 
of the complex plane plus all the points above the plane in Euclidean three-
space plus a point at infinity. The complex plane plus the point at infinity is 
sometimes called the sphere at infinity. A geodesic in hyperbolic three-space is 
mapped to a semicircle perpendicular to the complex plane or a straight half 
line perpendicular to the complex plane going to infinity. The geodesic surfaces 
are mapped to hemispheres with centers in the complex plane and half planes 
orthogonal to the complex plane. 

An ideal hyperbolic tetrahedron is a tetrahedron in which all the vertices 
are distinct and on the sphere at infinity. Any hyperbolic tetrahedron can be 
transformed by a rigid motion to one in which three of the vertices are at 0, 1, 
and 00 and the other vertex is at a point z in the complex plane. (This motion 
is possible because all four of the triangles of the tetrahedron are ideal and 
any ideal triangle can be moved to any other. Note that despite this fact, not 
all ideal hyperbolic tetrahedra are congruent.) The tetrahedron then looks like 
three vertical flat walls above the Euclidean triangle (0, 1, z) , bounded below 
by part of a hemispherical bubble. 

The hyperbolic cross section of the vertical chimney, in the hyperbolic metric, 
scales in a way that decreases with increasing height. (Most of the volume 
of hyperbolic space is near the complex plane.) It can be seen by integrating 
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that the volume of an ideal tetrahedron is finite, Let this volume be denoted 
by v(z), There are explicit formulas for v(z), from which it can be seen 
that the maximum is attained at the point z = w, where w is defined as 
w = e2rrij6, (See [6] for a discussion of how to compute hyperbolic volumes.) 
The tetrahedron of maximum volume is the most symmetrical one. Its base 
triangle (0. 1 . w) is equilateral, its dihedral angles are all 60 degrees, and its 
volume is v(w) = Va = 1.014941606··· 

3.2. The volume of hyperbolic polyhedra. Let (J be a triangulation of the sphere. 
For concreteness think of (J as though it is embedded in the sphere in some 
particular way. For any mapping of the vertices of (J to distinct points in 
three-dimensional hyperbolic space (or Euclidean space for the purposes of this 
discussion), there is a continuous map f from the sphere into hyperbolic space 
that (1) maps the vertices of (J to the appropriate places, and (2) maps every 
triangle of (J one-to-one onto a geodesic triangle in hyperbolic space. (Just as 
in Euclidean space, a simplex is geodesic in hyperbolic space if it and all of 
its subsimplices are in geodesic surfaces of appropriate dimension.) In other 
words, f maps the surface of the sphere into the surface of some hyperbolic 
polyhedron. 

Lemma 7. Let (J be a triangulation of the sphere. Let z be the fundamental 
2-cycle of (J (the sum of all its triangles with counterclockwise urientation). Let 
f be a map from (J into hyperbolic 3-space that maps each triangle of (J into 
a geodesic triangle. Let P be the hyperbolic polyhedron defined by f( (J). Let 
vol(P) be the hyperbolic algebraic volume enclosed by f(z). Then 

vol(P) () -v;- ::; t (J . 

o 

Proof. Let T be an exposed triangulation of the ball extending (J contammg 
t( (J) tetrahedra. Let f be a map from the vertices of (J to the vertices of P as 
described above, with the additional property that f maps all of the triangles 
of all of the tetrahedra of T to geodesic triangles in hyperbolic space. 

By the definition of T, there is a 3-chain c on T such that Bc = z, 
and the coefficients of care ± 1. The algebraic volume of P is the integral 
of the wrapping number w(z. f) = degree(c. f). Since the degree map is a 
linear operator on c and integration is a linear operator, we may separate this 
calculation into the sum of several terms, one for each tetrahedron of T. The 
contribution to this sum of each tetrahedron of T is its coefficient times the 
volume of the tetrahedron (degree is ±1 inside, 0 outside). No term exceeds 
Vo ' hence the lemma is true. 0 

We have now reduced the problem of finding lower bounds on t(n) to that 
of finding n-vertex hyperbolic polyhedra with large volumes. The remainder of 
this section is devoted to constructing such polyhedra. 
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3.3. A preliminary bound: 2n - O(nl/2). There is a tessellation of hyperbolic 
space consisting of copies of the simplex of maximal volume. This tessellation 
can be constructed by starting with some maximal simplex, reflecting it through 
its faces, reflecting these through their faces, and so on. For any finite union 
of these tetrahedra whose boundary is a sphere, we obtain a polyhedron. The 
triangulation we have is automatically a minimal extension of its boundary, 
since all the simplices are disjoint and have maximal volume. Indeed, it is 
the unique minimal extension: in any minimal triangulation, every tetrahedron 
must have maximal volume, hence it is determined by any of its faces. This 
determines, one-by-one, where the tetrahedra have to be. 

Consider the special case in which all the simplices have a common ver-
tex. (In general, we call a triangulation that is obtainable by coning to some 
vertex a cone-type triangulation.) We may assume that the common point is 
the point at infinity in the upper half space model. When drawn in this way, 
each of the tetrahedra lies above an equilateral triangle in the tessellation of 
the complex plane by equilateral triangles. Any set of triangles whose union is 
homeomorphic to a disk will define such a polyhedron. Consider the case when 
the bounding polygon is hexagonal, with k edges on a side. The hexagon con-
tains 6e triangles; hence the polyhedron contains 6k2 tetrahedra. (See Figure 
9.) The hexagon has 3k2 + 3k + 1 vertices, so the polyhedron has 3e + 3k + 2 
vertices (including the one at infinity). In particular we obtain 

t(n) ~ 6k2 = 2(3k2 + 3k + 2) - O(k) = 2n - O(nl/2). 

Note that by using other triangulations we can actually get explicit lower bounds 
for each n, not just those n of the form 3k2 + 3k + 2 . 

FIGURE 9. The boundary of the polyhedron used to 
show that t(n) ~ 2n - O(nl/2). 

3.4. A better lower bound: 2n - O(log(n)). To construct polyhedra that require 
more simplices for a given number of vertices we must eliminate the vertex 
of high degree. (Roughly speaking, polyhedra in which the vertices are spread 
over the sphere at infinity as uniformly as possible have the largest volumes.) 
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A natural sequence of triangulations for this purpose can be derived from a 
regular icosahedron. Divide each face of the icosahedron into k 2 equilateral 
triangles, giving 20k2 triangles in all and n = 10e + 2 vertices. 

We need to map the vertices of the triangulation of the sphere defined above 
into hyperbolic space in such a way that the resulting polyhedron has a large 
volume. The Riemann mapping theorem gives a way to do this. Corresponding 
to the icosahedron, there is a subdivision of the sphere into triangles bounded 
by segments of great circles, obtained by projecting the edges of the icosahe-
dron out to the sphere. The Riemann mapping theorem implies that there is a 
unique conformal map of the faces of the icosahedron to the spherical triangles, 
sending vertices of the icosahedron to the corresponding vertices of the spher-
ical triangles. By symmetry the maps determined on individual triangles piece 
together to give a map h of the entire surface of the icosahedron to the sphere. 
This map is conformal everywhere except at the vertices of the icosahedron. 
Note that it is conformal even on the edges of the icosahedron because they can 
be flattened out (locally) in the plane. Define the ideal hyperbolic polyhedron 
P(k) to have its vertices at those places on the sphere at infinity in hyperbolic 
space to which h maps the vertices of the subdivided icosahedron. 

Lemma 8. The volume of P(k) is 2nTO - O(log(n)) , where n = lOe + 2. 

Proof. To make the estimate of volume, pick a vertex of P(k) of degree six 
that is as far as possible from vertices of degree five and arrange this vertex 
to be at infinity in the upper half-space model. (This is a rigid rotation of 
P(k) in hyperbolic space.) Triangulate P(k) as the union of cones from the 
vertex at infinity to the triangles with all vertices finite. (This is a cone-type 
triangulation.) Call a vertex of P(k) "bad" if it is a vertex of the icosahedron 
or if it is the vertex mapped to infinity. Now h can be thought of as a map from 
the icosahedron to C (the complex plane) that is conformal everywhere except 
at the bad vertices. For large k the triangles far away from bad vertices get 
mapped by h to triangles that are nearly equilateral (because h is conformal). 
Figure 10 shows how the vertices of P(k) near a vertex of the icosahedron 
get mapped to the complex plane by h. If the vertices were vertices of true 
equilateral triangles then the tetrahedra formed by coning them to infinity would 
all be congruent to the tetrahedron of maximal volume. We must show that the 
deficit caused by the fact that the triangles are not quite equilateral is small. 

The shape of a triangle ~ with vertices p, q, r is conveniently described by 
a complex number s(~) = (r - p)/(q - p), its shape parameter. (The triangle 
(0, 1, s(~)) is congruent to ~.) The volume of the hyperbolic tetrahedron C(~) 
formed by coning ~ to the point at infinity is a function of the shape parameter 
of ~, vol(C(~)) = v(s(~)). Note that z, 1/(1 - z), and (z - 1)/z describe 
similar triangles, so v takes the same value at these three points. Since v 
attains its maximum at w, the first derivative of v at w is 0 , and the second 
derivative is the same in every direction because of symmetry. Thus, by Taylor's 
theorem, the volume deficit of C(~), defined as Vo - vol( C(~)) (where TO is 
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FIGURE 10. The way P(k) (near a vertex of the icosa-
hedron) gets mapped to the plane by h in the proof of 
Lemma 8. This is also the way that the boundary of a 
blemish of type (c) gets embedded in the plane in the 
proof of Theorem 1. 

the maximum volume of a tetrahedron), satisfies 

2 3 Vo - vol(C(Ll)) = Kl (lS(Ll) - wi ) + O(ls(Ll) - wi ), 

for a certain constant K 1 • Our goal is to show that the cumulative volume 
deficit is O(log(n)). 

We now digress to estimate the deficit of a triangle obtained by applying an 
arbitrary complex analytic function f to the vertices of an equilateral triangle. 
Subsequently we will apply this result using the map h. 

Consider the equilateral triangle LlI with vertices 0, t, and wt in the com-
plex plane and suppose that f is a holomorphic (complex analytic, or con-
formal) embedding of the disk of radius R > It I about 0 into the complex 
plane. How can we estimate the volume deficit of the tetrahedron spanned by 
00 together with the images of the vertices of LlI under f? 

In general, we may change f by postcomposing with a translation so that f 
fixes the origin. Let us expand f as a power series 

2 3 f(z)=az+bz +cz + ... 
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and solve for the coefficients of the power series expansion of the shape param-
eter s(t) = J(wt)/ J(t) of the image triangle. We can write 

s(t) = w + At + Bt2 + ... 
awt + bw2t 2 + ew3t 3 + ... 

at + bt2 + et3 + ... 
and solve for the coefficients. We obtain 

and 

The term of real interest is 

2 wb +Aa = bw 

3 we + Ab + Ba = ew . 

A = -b/a = -J"(0)/2J'(0) 

smce w2 - w = -1 . The next term is 
2 

B = .! (e ( w 3 - w) - - b b) = - ( w + 1)::' + ~ . 
a a a a 2 

Thus, the shape of the image triangle is 

s(t) = w - tJ" (0)/2J' (0) + O(t2). 

How doees the error term depend on J? First, we claim that the error is 
uniformly bounded by O(t2) independent of J defined on a fixed disk of radius 
R. In fact, the set of all holomorphic embeddings of the disk of radius R into 
C is compact in the appropriate topology; that is, any sequence of embeddings 
has a subsequence that converges to an embedding. The errors could not get 
worse and worse, or else the limit function would not have an estimate of the 
form O(t2). 

The dependence of the error term on R can now be easily deduced. A disk 
of radius R can be mapped to a disk of radius S by a complex affine map 
- that is, a complex linear map followed by a translation. The parameter t 
is multiplied by the ratio of the radii of the disks under such an affine map. 
Consequently, the error term above is O((t/ R)2) . 

Now we return to the estimate of the volume deficit. For any point p on 
the icosahedron define inj(p) , the injeetivity radius at p, to be the maximum 
radius of a disk in the Euclidean plane that can be isometrically embedded on 
the icosahedron with its center at p. Suppose we have a triangle in some subdi-
vision of the icosahedron that has no vertices in common with the icosahedron 
and no vertex mapped to infinity. Let e be the size of a side of the triangle (in 
the metric of the icosahedron). Then its volume deficit is not more than 

( 1 ) K, (e' I ;:' I') + 0 ( (inj~p)) 3) . 
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Since e2 is proportional to the area of the triangle, the total volume deficit 
can be approximated by an integral. 

(2) K31 ~:, I' dA + 0(1). 
good triangles 

J 
By good triangles we mean those that have no bad vertex. The contribution 
of the O((e/in}(p))3) term in (1) is at most a constant because on the good 
triangles in} (p) is at least e. This has been included in the O( 1) term in (2). 
The contribution of the bad triangles (those with a bad vertex) is also only a 
constant. The contribution of the part of the icosahedron that is farther than a 
fixed distance eo away from a bad vertex is also bounded by a constant. This is 
because the integrand is continuous and bounded except near the bad vertices. 
The only contribution left to evaluate is that of the annular regions of inner 
radius e and outer radius eo centered on the bad vertices (where e is the 
triangle mesh size). 

Near the bad vertices h behaves like zP where fJ = 6/5 if the bad vertex 
is an icosahedron vertex and fJ = -1 if the bad vertex is the one mapped 
to infinity. (The local coordinates are chosen so that the bad point is at the 
origin.) The entire deficit is estimated to within an additive constant by the 
sum (over bad vertices) of the integrals of K 3 ( 1/4)(fJ - 1 )2( 1/lzI2) over annular 
regions centered at the bad vertices with fixed outer radius eo and inner radius 
approximately equal to the mesh size e. The value of each of these integrals is 

K 3 i(fJ - 1)227r (logeo -loge). 

Since -log e = 10g(1 / e) = 0 (log( n)), we have bounded the deficit by 
O(log(n)). This completes the proof that vol(P(k)) = nVa - O(log(n)). 0 

3.5. The structure of minimal triangulations. We shall now apply the fact that 
P(k) has a volume deficit that is small compared to the number of tetrahedra 
to completely determine the minimal extensions of P(k) to the ball, provided 
that k is sufficiently large. 

Theorem 1. For sufficiently large k, any exposed triangulation of the ball ex-
tending the boundary of P(k) having the minimum number of tetrahedra is a 
cone-type triangulation. 

Proof. Suppose that T is any minimal exposed triangulation of the ball extend-
ing the boundary of P (k) . For any fixed e, at most 0 (log( n)) of the simplicies 
of T can have volume less than Vo -e. In particular, only O(log(n)) of its sim-
plices can touch the boundary on two faces, since such simplices have volume 
roughly (2/3) Vo . 

Since T is minimal it can have no more tetrahedra than any cone-type tri-
angulation. By coning to a vertex of degree six we obtain a triangulation with 
F - 6 tetrahedra, where F is the number of faces. If there are m tetrahedra in 
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T that have no face on the boundary then there are at least m + 6 tetrahedra of 
T that have two faces on the boundary. Since this quantity is O(log(n)), we 
conclude that m = 0 (log( n)) . Thus, most of the tetrahedra of T have exactly 
one face on the boundary. 

The three-dimensional triangulation near a vertex v has several possibilities. 
To analyze the possibilities, let Bv be the union of tetrahedra that have v as 
a vertex. Bv is a ball and its boundary is composed of two parts: Nv ' the 
union of the triangles of P(k) containing v as a vertex, and Qv' the union of 
the remaining triangles. N v and Qv are joined along a polygon p, which is a 
hexagon unless v is one of the twelve vertices of order 5, in which case it is a 
pentagon. It is convenient to color the faces of Qv red or white, according to 
whether they are faces of the boundary P(k) of T. (This happens naturally 
if T is an apple with a red skin and a white interior.) All the faces of Nv are 
red. 

The vertex v is an ordinary vertex if the triangulation of Qv is isomorphic to 
that of Nv ' with exactly one interior vertex and all triangles having one comer 
in the interior and an edge along p. It is a cone vertex if Bv = T, so that 
the entire triangulation is a cone-type triangulation to v. If v is neither an 
ordinary vertex nor a cone vertex, it is an extraordinary vertex. 

We shall show that if v is extraordinary, then either (1) at least one pair 
of triangles of N v belong to a common tetrahedron, or (2) there is at least 
one white triangle of Q v that does not have an edge on the boundary of Qv' 
Suppose that v is extraordinary and that (2) is false; that is, all white triangles 
of Qv have an edge on the boundary of Qv • There is at least one white triangle 
of Qv (otherwise v would be a cone vertex). If one of these white triangles has 
two edges on the boundary of Qv then two of the other sides of its tetrahedron 
are triangles of Nv ' In this case statement (I) holds. 

It remains to consider the case in which all of the white triangles of Qv have 
exactly one of their edges on the boundary of Qv' Two white triangles are said 
to be adjacent if they share an edge. Consider a maximal set of adjacent white 
triangles of Qv' This set is either a cycle of white triangles or it is a sequence 
of white triangles bounded at each end by a red triangle. If the former case 
occurs it shows that v must have been an ordinary vertex. In the latter case, let 
e be the edge on one end of the sequence of white triangles separating it from a 
red triangle and let f be the edge on the other end of the sequence separating 
it from a red triangle. A cycle of length four on the boundary of polyhedron 
P(k) is formed by e and f along with two edges incident on v. In P(k) 
the only cycles of length four are the boundary of the union of two adjacent 
triangles. Therefore, the only possibility is that the length of the sequence of 
white triangles is either 1 or order (v) - 1. In the first case, the single white 
triangle would actually have been red (all of its edges are on the boundary of 
P(k)) , contrary to assumption. In the latter case, Qv would have had one red 
triangle and order (v) - 1 white triangles, making it an ordinary vertex after all. 
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It follows that there are at most 0 (log( n)) extraordinary vertices, since at 
each extraordinary vertex there is at least one comer of a simplex either touching 
aT on two faces or on no faces, and there are only O(log(n)) such simplices. 

Let m be the map from the faces of the polyhedron to the vertices of the 
polyhedron that associates to a face f the fourth vertex of the tetrahedron of 
T having f as a face. If f and g are any two faces in Nv for any ordinary 
vertex v, then m(f) = m(g) . 

Consider the partition of the faces of the polyhedron according to m(f). 
Let us assume that there is no cone vertex. Any two distinct partition elements 
can be separated from each other by a cycle of edges passing only through 
extraordinary vertices. A simple curve of length m on the icosahedron separates 
the surface into two regions, at least one of which has area A less than the area 
of a circle of circumference m in the plane; that is, A ::; m2 j4n. It follows 
that one partition element must have n - O((log(n))2) faces, and the other 
O(log(n)) partition elements are of size O((log(n))2). 

The boundary of P(k) minus the large component is a collection of simply 
connected regions. Call each of these components a blemish. 

For each triangle of the big component there is a tetrahedron of T from that 
triangle to a common vertex v* . Thus T is almost a cone-type triangulation, 
with just a few possible bad spots. The places where T may disagree with the 
cone-type triangulation C( v *) are in the volumes bounded by the triangulation 
of the big component and the blemishes. We know the triangulations of the 
boundaries of these volumes, but the interior triangulations are unknown. To 
complete the analysis, we shall show that the triangulations of the volumes of 
these blemishes in fact must also agree with C(V*) , given that they are minimal 
triangulations. 

The blemishes can be sorted into four types, depending on the type of bound-
ary they have. Here are the four types. 

(a) The blemish contains no vertex of degree five, and does not contain v* . 
In this case the boundary is a portion of the tessellation of the plane by 
equilateral triangles, with the boundary of these triangles coned to v* . 

(b) The blemish contains no vertex of degree five, and v * is among the 
vertices of the blemish. The boundary of the blemish is not a sphere; 
it may be chosen to be homeomorphic to a sphere with the north pole 
and south pole identified. 

(c) The blemish contains a vertex of degree five, and v* is not among the 
vertices of the blemish. The boundary triangulation is obtained from a 
regular pentagon by first subdividing into five triangles, then subdividing 
these into congruent subtriangles, repeating this process, taking a subset 
of this, and then coning its boundary to one extra vertex v* . 

(d) The blemish contains a vertex of degree five, and v* is among the 
vertices of the blemish. This case is like (b) and (c) combined. 
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We shall show that none of these four blemishes can actually exist. That 
is, the unique minimum way to triangulate each of the blemishes is to cone to 
vertex v'. We shall use four proofs, one for each of the blemish types. The 
impossibility of (b) and (d) follows from that of (a) and (c). The proofs that (a) 
and (c) are impossible are hyperbolic volume arguments similar to those used to 
prove the bounds of §§3.3 and 3.4. Each proof describes how the blemish is to 
be embedded in hyperbolic three-space, evaluates the volume of the embedding, 
and finally shows that the volume is so large that any other triangulation besides 
C( v *) uses more simplices. 

Case (a) is the easiest to resolve. We can embed the boundary of the blemish 
so that all its vertices except v' agree with the vertices of the equilateral trian-
gulation of the plane and v* is mapped to the point at infinity. (The boundary 
of the blemish is the same as the boundary of one of the partial tessellations 
of space with maximal simplices described in §3.3.) The triangulation of the 
blemish obtained by coning to v* contains only simplices of maximal volume, 
and these are nonoverlapping. Therefore, any triangulation of this blemish that 
uses a simplex of less than maximal volume would use at least one more sim-
plex. The only way to avoid using a simplex of less than maximal volume is 
by coning to v'. It is easy to see this by considering a simplex s with one of 
its vertices at v* and having a face on the boundary of the blemish. If s is 
of maximal volume, its fourth vertex must be at the lattice point on the com-
plex plane nearest its other two vertices. Removing s and iterating this process 
shows that the only triangulation exclusively using maximal simplices is a cone 
triangulation to v* . 

Case (b) can be handled in a similar fashion. Again embed the boundary of 
the blemish so that all its vertices except v' agree with the vertices of the equi-
lateral triangulation of the plane and v' is mapped to the point at infinity. The 
resulting object resembles an annular cylinder in which the hole is hexagonal. 
Now each simplex of the cone triangulation C(v') has maximal volume, and 
these simplices are nonoverlapping. Again, this is the only possible minimal 
triangulation extending the boundary of the blemish. 

There is another approach to eliminating type (b) blemishes. Let B be a 
type (b) blemish. By gluing six implices to the boundary of B around v* , we 
obtain a blemish B' of type (a). Suppose there were an alternative method 
of triangulating B that used no more simplices than coning to v' . Then this 
alternative triangulation could be made into a noncone-type triangulation of 
B' using no more simplices than the cone-type triangulation of B'. We have 
already shown that such alternative triangulations do not exist. 

It remains for us to deal with the twelve possible blemishes of types (c) and 
(d). The same argument used above implies that if we can show that a blemish 
of type (c) must be triangulated with a cone-type triangulation then one of type 
(d) must also. Thus it only remains to deal with the type (c) blemishes. 

We can embed the boundary of any such blemish in hyperbolic space as 
follows. First we construct a tiling of the plane with nearly equilateral triangles 
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and one vertex of degree five. This is done by modifying the tessellation of the 
plane by equilateral triangles. First remove a wedge (with its apex at the origin) 
containing one sixth of the triangles. Now raise every point to the power 6/5, 
which closes the gap left by removing the wedge. (Figure 10 shows a portion 
of this tiling.) Now select a connected subset of this tiling of the plane that 
contains the vertex of degree five, such that this subset is isomorphic to the 
portion of the boundary of the blemish coming from the boundary of P(k). 
Place the vertex v * at infinity to complete the embedding of the boundary of 
the blemish. 

In this embedding, the simplices of the cone triangulation C(v*) are not 
regular,but they are nearly regular. To evaluate the deficit of this structure one 
can do a numerical calculation. To simplify matters we embed the blemish in 
a larger structure, one in which the portion of the tiling of the complex plane is 
shaped like a regular pentagon. Let j be the number of edges in the subdivision 
of each edge of the pentagon, so that the pentagon has 5 i triangles. We shall 
show that the only way to minimally triangulate this extended blemish is to cone 
to v* . 

When we apply the volume estimate of §3.4 to the above mapping and eval-
uate the constants, we obtain the following formula for the deficit. 

DefU) = ;0 InU) + 0(1). 
Numerical calculation can be used to determine the behavior of the 0(1) term. 
The results are shown in Table 1. The deficit increases by about .0363 each time 
j is doubled, and the 0(1) term is approaching .08538···. (Our formula 
for estimating the deficit did not take into account the deficit from the five 
tetrahedra around the core of the blemish; note that the error term is always 
less than the deficit accounted for by these central tetrahedra.) 

TABLE 1 

j Triangles Deficit Estimated Error 
1 5 .087935 .000000 .087935 
2 20 .122353 .036293 .086060 
4 80 .158141 .072586 .085554 
8 320 .194304 .108879 .085424 

16 1280 .230564 .145172 .085391 
32 5120 .266849 .181466 .085383 
64 20480 .303140 .217759 .085381 

If there were any extraordinary vertices in a minimal triangulation of the 
blemish, then there would have to be at least one simplex with two faces on 
the base of the blemish, since the total number of simplices is no more than 
the number of faces of the base. The deficit of a simplex touching two faces 
along an edge tends to Vo/3 = 0.3383. We calculated values of the deficit 
for simplices having two faces sharing an edge near the vertex of order 5; the 
smallest deficit of any such tetrahedron is 0.3333. 
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Consider a triangulation T of the blemish that has exactly one simplex with 
two faces on the base of the blemish, exactly one simplex with no faces on the 
base, and all other simplices coned from the base of the blemish to v*. In 
order for this triangulation to use no more tetrahedra than the canonical one, 
the blemish must be large enough so that the deficit of the entire structure is 
at least 0.3333. Table 1 shows that the radius must therefore be at least 64. 
Because T has only two deviant tetrahedra (tetrahedra that are not coned to 
v* ), it has at most eight extraordinary vertices. It therefore must be possible 
to embed this blemish in a pentagon of radius at most eight. Since eight is less 
than 64 , such a triangulation T is impossible. 

Before there is enough volume deficit for a second simplex touching two 
faces, the radius of the blemish would have to double at least eight more times, 
to more than 4000. Such a triangulation could be embedded in a pentagon of 
radius at most 16. The reasoning used above shows that this too is impossible. 
In general, no matter how many of these deviant simplices there are, the radius 
required to achieve the necessary deficit is much bigger than required to absorb 
that many simplices. This completes the proof of Theorem 1. 0 

If the sizes of the deficits were not quite so small, this argument would not 
work for small j, and we could only deduce that the minimal number of sim-
plices was within an additive constant of the number for C(v*). For example, 
consider the sequence of subdivisions of the tetrahedron or of the octahedron 
instead of the icosahedron. For a tetrahedron, the numbers do not work out: 
in fact, the cone-type triangulations of subdivisions of the tetrahedron can be 
improved by first cutting off the corners. This fact manifests itself in Table 2 
in which the deficit is more than 1 even for small values of j. 

TABLE 2 

j Triangles Deficit Estimated Error 
1 3 1.014942 0.000000 1.014942 
2 12 1.520982 0.544397 0.976585 
4 48 2.054948 1.088793 0.966155 
8 192 2.596627 1.633190 0.963437 

16 768 3.140336 2.177586 0.962750 
32 3072 3.684560 2.721983 0.962578 
64 12288 4.228914 3.266379 0.962535 

For an octahedron, the numbers work easily to prove that the cone-type tri-
angulation is minimal: a blemish with deficit Va must have radius more than 
11, at which size it is easy to see that one can replace it with smaller blemishes. 
See Table 3. However, in this case, the cone-type triangulation of the blemish is 
not unique. Already the blemish of radius 1 has deficit 0.395904. This blemish 
is the octahedron, which admits three different minimal triangulations (related 
by the symmetry of the octahedron). This octahedron is contained within the 
cone-type triangulations of all the larger blemishes, so none of them are unique. 



674 D. D. SLEATOR, R. E. TARJAN, AND W. P. THURSTON 

TABLE 3 

j Triangles Deficit Estimated Error 
1 4 0.395904 0.000000 0.395904 
2 16 0.566991 0.181466 0.385525 
4 64 0.745656 0.362931 0.382725 
8 256 0.926398 0.544397 0.382002 

11 484 1.009655 0.627768 0.381887 
16 1024 1.107681 0.725862 0.381819 
32 4096 1.289101 0.907328 0.381774 
64 16384 1.470555 1.088793 0.381762 

Theorem 1 applies to a far wider variety of triangulations than P(k). Our 
proofs of both Lemma 8 and Theorem 1 apply with almost no changes to any 
triangulation satisfying the following conditions: (1) All the vertices are of order 
five or six. (2) The triangulation can be drawn with equilateral triangles on the 
surface of a convex polytope whose shape is distorted from a sphere by only a 

. "constant amount." (3) Within a radius of 0 (log n) of any vertex of order five, 
the triangulation is isomorphic to Figure 10, and elsewhere it is isomorphic to 
the standard tessellation of the plane by equilateral triangles. 

To prove a result analogous to Lemma 8 for this class of triangulations we 
first need to map the triangulation to a sphere, with a map that is conformal 
everywhere except at the vertices of order five. In the proof of Lemma 8 we 
used the Riemann mapping theorem. Here we must use a more general theorem 
called the uniformization theorem. It tells us that there is a map from the 
surface of any polytope to a sphere that is conformal everywhere except at the 
vertices of the polytope. Furthermore the fact that the polytope is distorted 
from a sphere by only a constant amount allows this map to have its derivative 
bounded below and its second derivative bounded above away from the vertices. 
These are the bounds required for the proof. 

Given condition (3) on the triangulation and the 0 (log n) bound on the 
deficit of the embedding, the same reasoning employed in the proof of Theorem 
1 shows that the cone-type triangulation is the minimal for these triangulations. 
To prove that d(n) = t(n) = 2n - 10 for all sufficiently large values of n, it 
only remains to show how to construct an appropriate triangulation for every 
sufficiently large n. We shall now give this construction. 

First consider the triangulation of the plane by equilateral triangles, arranged 
so that one vertex is at the origin. Pick any other two vertices VI and v2 so that 
the three are not collinear and mark off the sublattice they generate. There is 
a group of symmetries of the triangulation generated by 180 0 rotations about 
0, VI' and v2 • Each of these rotations preserves the lattice we have marked 
off. This group preserves not only the tessellation of the plane by equilateral 
triangles, but also a tessellation by parallelograms congruent to the one spanned 
by VI and v2 • If the parallelograms are colored black and white in a checker-
board pattern, the coloring is also preserved by the group. If we fold up the 
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plane by the group action, we obtain as quotient space a polyhedron that has 
four vertices of order three (coming from 0, VI' v2 ' and Vi + v2 ), while all 
the other vertices are of order six. It can be realized in space as a tetrahedron, 
with a finer triangulation by equilateral triangles drawn on its surface. Its area 
is the sum of the area of the black and the white parallelograms. The number 
of vertices is the area of the tetrahedron, divided by the area of the smallest lat-
tice parallelogram, plus two. Using this information, it is not hard to construct 
an example of this type with any even number of vertices bigger than two and 
where the vertices of order three are fairly far apart. 

A slight modification of this construction gives rise to triangulated polyhedra 
with n vertices for any n 2: 8. In the new construction superimpose on the 
original equilateral triangulation a triangulation by equilateral triangles of half 
the edge length, arranged so that the origin is in the middle of an edge of a 
larger triangle. Call the vertices of the larger triangles coarse vertices, and all 
the remaining vertices fine vertices. Let the equilateral triangles formed by three 
neighboring coarse vertices be called coarse triangles, and define fine triangles 
analogously. Choose Vi and v2 so that Vi' v2 ' and Vi + v2 are all fine vertices. 
Mark out the lattice generated by Vi and v2 • It is again the case that a rotation 
by 180 0 about any lattice point preserves both the coarse and the fine vertices. 
Now cut out from the plane all coarse triangles that touch a lattice point. The 
picture is now the plane minus a collection of parallelograms (each formed 
by a pair of missing coarse triangles). Form the quotient space by the group 
generated by 180 0 rotations about lattice points, as before. The four edges of 
each of the missing parallelograms fold up to form a bi-gon. Glue together the 
two edges of the bi-gon to form a single edge. The desired triangulation is that 
obtained by considering the coarse vertices and the coarse triangles. Each vertex 
is of order six except those near the missing parallelograms. Each of the four 
missing parallelograms creates a vertex of order five and a vertex of order four. 
(The process described here breaks down if n is less than eight, because for 
these small numbers the deleted parallelograms are not disjoint.) Figure II(a) 
shows the first stage of the constructure of a polyhedron of nine vertices. The 
fine triangles are not shown. Figure 11 (b) shows the triangulation that results 
from this choice of lattice vertices. 

The number of vertices in a triangulation formed by this process is just twice 
the area of a lattice parallelogram as measured in units of coarse parallelograms 
(each of which is two coarse triangles). To prove that we can obtain trian-
gulations with any number of vertices, we need to show that there is a basis 
parallelogram for the lattice that has any desired half-integral area. The follow-
ing paragraph describes how to do this in such a way that the lengths of the 
basis vectors are E>( n i /2) . 

Choose a fine vertex as the origin. Then choose nonorthogonal x and y 
axes such that (1) they go through the origin, (2) they avoid all coarse vertices, 
(3) they are parallel to one of the sides of each coarse triangle, and (4) the x 
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FIGURE 11. Constructing a triangulation of nine ver-
tices, one of order six, four of order five, and four of 
order four. (a) shows the coarse triangles, the lattice 
points, and the lines between the lattice points. The 
shaded parallelograms are the ones that are removed. 
(b) shows the triangulation that results. 

axis is 60 0 clockwise of the y axis. In the x direction let the unit distance be 
the length of a side of a coarse triangle. In the y direction let the unit distance 
be the length of a side of a fine triangle. Each point with integral coordinates 
is a fine vertex (although not all fine vertices have integral cordi nates in this 
framework). We are seeking two vectors VI = (a, b) and v2 = (c ,d) such that 
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the area of the resulting parallelogram (in the metric of this coordinate system) 
is the desired value n and the parallelogram is nearly square. Let 

a = 1, d = eb - n, 

The area of the parallelogram is be - ad = be - (eb - n) = n. It is also easy to 
see that all the sides are 8(nl/2) in length. 

A further modification gives rise to triangulations with twelve order five ver-
tices and all others of order six, as follows. First, consider a triangle T with 
coarse vertices and with sides a, b, and e in counterclockwise order. Let p 
be the vertex between sides a and b . Around the vertex p, one can arrange six 
triangles, alternating between equilateral triangles and congruent copies of T 
arranged so that one of the other corners is at p. The union of the six triangles 
covers a hexagon H with sides of type a, b, e, a, b, and e in counterclock-
wise order, with opposite sides parallel. The hexagon admits a 180 0 symmetry. 
The point of symmetry is always on a coarse or fine vertex; which type de-
pends on the original triangle T. For present purposes, it is desirable that T 
be nearly equilateral and that the point of symmetry be a fine vertex. We can 
construct such a T by starting with a large equilateral triangle on the coarse 
vertices and moving one of the vertices of this triangle to one of the six nearby 
coarse vertices. Figure 12 shows how the hexagon is formed from three copies 
of a triangle a, b, e, and three equilateral triangles. 

Use Hand T to construct the desired triangulation as follows. As in the 
previous construction, let the origin be a fine vertex, and choose vectors v I and 
v2 on fine vertices so that VI + v2 is also a fine vertex. Form the lattice from 
these two vectors. Now, instead of removing the two coarse triangles near each 
lattice point, remove a copy of H centered there. Form the quotient by the 
same group of symmetries, generated by order two rotations about lattice points. 
These symmetries carry the copies of H to themselves so that the quotient is a 
surface with boundary, where each boundary component has three edges of types 
a, b, and e. Glue a copy of T to each one. (In the previous construction, 
each missing parallelogram became a bi-gon, which we then closed up. Here 
the missing hexagon becomes a missing triangle, and we patch the hole with a 
copy of T.) The polyhedron we obtain has twelve vertices of degree five (one 
at each corner of each copy of T that is inserted), and all the other vertices 
have degree six. 

It is easy to obtain such a polyhedron for any sufficiently large n. First 
construct a T that contains about an coarse vertices, where a is some small 
fraction, say 1/20. Let I TI be the number of coarse vertices in T, not counting 
boundary vertices. Construct H, and define IHI similarly. Let n' = n - 21HI + 
41TI. Now choose VI and v2 such that they would give a construction with n' 
vertices without replacing the hexagons by triangles. When this replacement is 
done, the number of vertices left is n. 
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FIGURE 12. The way three copies of triangle (a, b, c) are 
glued together, along with three equilateral triangles, to 
form a hexagon. Note that the hexagon has 180 0 sym-
metry. 

It is easy to see that the resulting triangulation has all the properties required 
for our proof of Theorem 1 to apply, and it has any sufficiently large number 
of vertices. Thus we have proved the following theorem. 

Theorem 2. t (n) = d (n) = 2n - 10 for all sufficiently large values of n . 

4. REMARKS AND QUESTIONS 

Our results say nothing about small values of n. We conjecture that t(n) = 
2n - 10 for all n > 12, but we have been unable to extend our proof to show 
this. Probably some more concrete calculations of volumes and triangulations, 
for polyhedra with low values of n, would show this. 

Empirically, it seems that for very many triangulations of the sphere, cone-
type triangulations give the best possible extensions to a ball. It would be nice 
to have a good criterion of when this is the case. Even when cone-type triangu-
lations are not the best possible, they provide a seemingly efficient method of 
finding a minimum triangulation: begin with a cone-type triangulation to a ver-
tex v* of maximal order. Now look for subpolyhedra where the cone vertex is 
not the vertex of minimal order for the boundary triangulation; replace the tri-
angulation in the subpolyhedron by a different cone-triangulation. For instance, 
if one begins with a triangulation of the sphere having vertices vI and v2 ' of 
orders say fifteen and twelve, separated by a simple cycle of edges p of length 
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eleven or less, then one can begin by constructing the cone triangulation to v I . 

The union of tetrahedra that touch v2 's side of p form a subpolyhedron Q, 
which has a cone-type triangulation to vI - but on the boundary of Q, VI has 
order the length of p, which is not more than eleven. Replacing the triangula-
tion of Q by the cone to v2 reduces the number of tetrahedra. This idea can 
be iterated. There are sometimes situations where several moves of this type 
that do not reduce the number of tetrahedra, but maintain it at a constant, are 
necessary before a move of this type can reduce the number. It is possible to 
get from any triangulation to any other if we allow moves of this type that may 
increase the number of tetrahedra. We know of no instance, however, where in 
order to decrease the number of tetrahedra, it is first necessary to increase the 
number. 

A more complete development of our method would allow other types of 
blemishes that are not nearly round and that touch the boundary triangulation 
in a surface that is not necessarily a disk. The estimates would be much stronger 
in this case. We conjecture that such a method would show that if there are no 
vertices of order less than four, and if the injectivity radius is always bigger than 
some fixed constant, that the cone-type triangulation is a minimal triangulation. 

The role that geometry plays in this problem may seem mysterious. There 
should be an analysis that is entirely combinatorial. It may help clarify the 
relation to combinatorics if we point out the relation of this question to network 
flow problems, and to the "max flow min cut" principle. 

To develop this idea, consider the (n - I)-simplex Ll n-I , which has n ver-
tices vO"'" V n-I' This circular order defines a Hamiltonian circuit in the 
I-skeleton of Ll n -I , which we can think of as identified with the boundary of 
our original polygon. The sum of the oriented edges of this circuit is a I-cycle 
a. A triangulation of the disk defines a 2-chain G such that aG = a, since 
each triple of vertices of a spans a unique triangle in the 2-skeleton of Ll n-I . 

Consider two different triangulations of the disk, giving two different 2-chains 
G 1 and G2 . Then z = GI - G2 is a 2-cycle. Define the quantity g(z) to be the 
minimum L 1 norm of a 3-chain T such that aT = z. (The L I norm of a 
chain is the sum of the absolute values of its coefficients.) Both the minimum 
number of elementary moves to get from GI to G2 and the minimum number 
of 3-simplices it takes to extend the triangulation they define to the ball give 
upper bounds for g(z). Geometrically, if z comes from a triangulation of 
the boundary of a ball, then any 3-chain T such that aT = z can be mapped 
into the ball, giving a possibly multiple-valued triangulation of the ball, where 
tetrahedra with fractional weights are allowed, but the weights of overlapping 
tetrahedra must add up to I at each point. 

Unlike the problem of finding minimal triangulations, the problem of finding 
a chain T such that aT = z with minimum L I norm is a linear problem: it 
is a question of minimizing a convex function subject to a linear constraint. 
Therefore there is a dual problem. The dual space of the space Ck of k-chains 
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of a simplicial complex is denoted Ck , the space of k-cochains. A k-cochain 
is a linear function on the k-chains, and it is determined by its values on the 
oriented simplices, since they span the space (and a choice of an orientation on 
each simplex gives a basis). The coboundary map J maps C k to Ck+1 ; when 
P is an oriented k + I-simplex and c is a k-cochain, J (P) is c applied to the 
sum ap of the oriented faces of p. A co chain whose coboundary is 0 is called 
a cocyle. 

The dual problem is this: given z, what is the minimum L 00 norm h (z) of 
a 3-cocycle V such that (V, T) = I, where T is any chain such that aT = z? 
Here, ( , ) is the dual pairing of cochains with chains. This formulation 
depends on the fact that the simplex ~n-I is acyclic; that is, in any dimension 
except 0 , every cycle is a boundary. Therefore, if T' is any other chain such 
that aT' = z, the difference T - T' is a 3-cycle, so there exists a 4-chain a 
with aa = T - T' . Therefore 

(V, T) - (V, T') = (V,aa) = (JV,a) = (O,a) = O. 

The solutions to the dual problems satisfy g(z)· h(z) = 1. A good example 
of a chain T gives an upper bound for g(z); a good example of a co cycle V 
gives a lower bound. The quantity g(z) is like a minimum cut; the quantity 
Ijh(z) is like a maximum flow. 

A mapping f of ~n-I into hyperbolic space defines a 3-cocycle VJ , which 
assigns to any 3-chain the algebraic volume of its image. (We should divide 
VJ by the total volume to make it literally fit the formulation above.) If we 
allowed ourselves to push the triangles around so that they were curved, we 
could obtain every possible 3-cocycle in this way. In most cases, no single map 
that takes triangles to geodesic triangles gives the best cocycle for our problem. 
Presumably, some convex combination of cocycles VJ of the form we used 
would give a cocycle of norm even closer to the minimum. Our actual argument 
made use of the fact that we only allowed integral cycles T, with no fractional 
weighting. 

The quantity g(z) was introduced and studied in a more general topological 
context by Gromov (see [12]). He proved that for a closed oriented hyperbolic 
manifold M n , the minimum LI norm of an n-cycle representing the funda-
mental class of M is exactly the volume of M divided by the maximal volume 
of a hyperbolic n-simplex. To approach the best bound in this case of a closed 
manifold, it is definitely necessary to use simplices of fractional weights. Per-
haps this work will be useful in analyzing best possible actual triangulations of 
3-manifolds. 
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ABSTRACT. A rotation in a binary tree is a local restructuring that changes the 
tree into another tree. Rotations are useful in the design of tree-based data struc-
tures. The rotation distance between a pair of trees is the minimum number of 
rotations needed to convert one tree into the other. In this paper we estab-
lish a tight bound of 2n - 6 on the maximum rotation distance between two 
n-node trees for all large n. The hard and novel part of the proof is the lower 
bound, which makes use of volumetric arguments in hyperbolic 3-space. Our 
proof also gives a tight bound on the minimum number of tetrahedra needed 
to dissect a polyhedron in the worst case and reveals connections among binary 
trees, triangulations, polyhedra, and hyperbolic geometry. 
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