Inertial manifolds for reaction diffusion equations in higher space dimensions
Authors:
John Mallet-Paret and George R. Sell
Journal:
J. Amer. Math. Soc. 1 (1988), 805-866
MSC:
Primary 58F12; Secondary 35K57, 47H20, 58D25
DOI:
https://doi.org/10.1090/S0894-0347-1988-0943276-7
MathSciNet review:
943276
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we show that the scalar reaction diffusion equation \[ {u_t} = \nu \Delta u + f(x,u),\qquad u \in R\] with $x \in {\Omega _n} \subset {R^n}\quad (n = 2,3)$ and with Dirichlet, Neumann, or periodic boundary conditions, has an inertial manifold when (1) the equation is dissipative, and (2) $f$ is of class ${C^3}$ and for ${\Omega _3} = {(0,2\pi )^3}$ or ${\Omega _2} = (0,2\pi /{a_1}) \times (0,2\pi /{a_2})$, where ${a_1}$ and ${a_2}$ are positive. The proof is based on an (abstract) Invariant Manifold Theorem for flows on a Hilbert space. It is significant that on ${\Omega _3}$ the spectrum of the Laplacian $\Delta$ does not have arbitrary large gaps, as required in other theories of inertial manifolds. Our proof is based on a crucial property of the Schroedinger operator $\Delta + \upsilon (x)$, which is valid only in space dimension $n \leq 3$. This property says that $\Delta + \upsilon (x)$ can be well approximated by the constant coefficient problem $\Delta + \bar \upsilon$ over large segments of the Hilbert space ${L^2}(\Omega )$, where $\bar \upsilon = {({\text {vol}}\Omega )^{ - 1}}\int _\Omega {\upsilon \;dx}$ is the average value of $\upsilon$. We call this property the Principle of Spatial Averaging. The proof that the Schroedinger operator satisfies the Principle of Spatial Averaging on the regions ${\Omega _2}$ and ${\Omega _3}$ described above follows from a gap theorem for finite families of quadratic forms, which we present in an Appendix to this paper.
- Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957
- J. E. Billotti and J. P. LaSalle, Dissipative periodic processes, Bull. Amer. Math. Soc. 77 (1971), 1082–1088. MR 284682, DOI https://doi.org/10.1090/S0002-9904-1971-12879-3
- P. Constantin and C. Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for $2$D Navier-Stokes equations, Comm. Pure Appl. Math. 38 (1985), no. 1, 1–27. MR 768102, DOI https://doi.org/10.1002/cpa.3160380102
- Peter Constantin, Ciprian Foias, Basil Nicolaenko, and Roger Temam, Nouveaux résultats sur les variétés inertielles pour les équations différentielles dissipatives, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 10, 375–378 (French, with English summary). MR 838393 ---, (1988), Integral manifolds and inertial manifolds for dissipative partial differential equations, Inst. Appl. Math. Sci. Comp. Preprint, Indiana Univ.
- P. Constantin, C. Foias, B. Nicolaenko, and R. Temam, Spectral barriers and inertial manifolds for dissipative partial differential equations, J. Dynam. Differential Equations 1 (1989), no. 1, 45–73. MR 1010960, DOI https://doi.org/10.1007/BF01048790
- P. Constantin, C. Foias, and R. Temam, Attractors representing turbulent flows, Mem. Amer. Math. Soc. 53 (1985), no. 314, vii+67. MR 776345, DOI https://doi.org/10.1090/memo/0314
- D. E. Edmunds and W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1987. Oxford Science Publications. MR 929030
- Neil Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21 (1971/72), 193–226. MR 287106, DOI https://doi.org/10.1512/iumj.1971.21.21017
- C. Foias, O. Manley, and R. Temam, Attractors for the Bénard problem: existence and physical bounds on their fractal dimension, Nonlinear Anal. 11 (1987), no. 8, 939–967. MR 903787, DOI https://doi.org/10.1016/0362-546X%2887%2990061-7
- Ciprian Foias, George R. Sell, and Roger Temam, Variétés inertielles des équations différentielles dissipatives, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 5, 139–141 (French, with English summary). MR 801946 ---, (1988), Inertial manifold for the Kuramoto Sivashinsky equation, J. Math. Pures Appl. (to appear).
- Ciprian Foias, George R. Sell, and Roger Temam, Variétés inertielles des équations différentielles dissipatives, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 5, 139–141 (French, with English summary). MR 801946
- Ciprian Foias, George R. Sell, and Roger Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations 73 (1988), no. 2, 309–353. MR 943945, DOI https://doi.org/10.1016/0022-0396%2888%2990110-6 Foias, C., G. R. Sell, and E. Titi (1988), Exponential tracking and approximation of inertial manifolds for dissipative equations, Inst. Appl. Math. Sci. Comp. Preprint, Indiana Univ.
- C. Foiaş and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures Appl. (9) 58 (1979), no. 3, 339–368. MR 544257
- Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371
- Jack K. Hale, Luis T. Magalhães, and Waldyr M. Oliva, An introduction to infinite-dimensional dynamical systems—geometric theory, Applied Mathematical Sciences, vol. 47, Springer-Verlag, New York, 1984. With an appendix by Krzysztof P. Rybakowski. MR 725501
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
- Edwin Hewitt and Karl Stromberg, Real and abstract analysis, Springer-Verlag, New York-Heidelberg, 1975. A modern treatment of the theory of functions of a real variable; Third printing; Graduate Texts in Mathematics, No. 25. MR 0367121
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173 Kamaev, D. A. (1981), Hopf’s conjecture for a class of chemical kinetics equations, J. Soviet Math. 25, 836-849.
- John Mallet-Paret, Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J. Differential Equations 22 (1976), no. 2, 331–348. MR 423399, DOI https://doi.org/10.1016/0022-0396%2876%2990032-2 Mallet-Paret, J. and G. R. Sell (1988), Counterexamples to the existence of inertial manifolds.
- Ricardo Mañé, Reduction of semilinear parabolic equations to finite dimensional $C^{1}$ flows, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976) Springer, Berlin, 1977, pp. 361–378. Lecture Notes in Math., Vol. 597. MR 0451309
- Ricardo Mañé, On the dimension of the compact invariant sets of certain nonlinear maps, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin-New York, 1981, pp. 230–242. MR 654892
- Xavier Mora, Finite-dimensional attracting manifolds in reaction-diffusion equations, Nonlinear partial differential equations (Durham, N.H., 1982) Contemp. Math., vol. 17, Amer. Math. Soc., Providence, R.I., 1983, pp. 353–360. MR 706109
- Xavier Mora and Joan Solà-Morales, Diffusion equations as singular limits of damped wave equations, Differential equations (Xanthi, 1987) Lecture Notes in Pure and Appl. Math., vol. 118, Dekker, New York, 1989, pp. 499–506. MR 1021752
- B. Nicolaenko, B. Scheurer, and R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors, Phys. D 16 (1985), no. 2, 155–183. MR 796268, DOI https://doi.org/10.1016/0167-2789%2885%2990056-9 ---, (1987), Some global dynamical properties of a class of pattern formation equations, IMA Preprint No. 381.
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486
- V. A. Pliss, A reduction principle in the theory of stability of motion, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1297–1324 (Russian). MR 0190449
- Ian Richards, On the gaps between numbers which are sums of two squares, Adv. in Math. 46 (1982), no. 1, 1–2. MR 676985, DOI https://doi.org/10.1016/0001-8708%2882%2990051-2
- Robert J. Sacker, A perturbation theorem for invariant manifolds and Hölder continuity, J. Math. Mech. 18 (1969), 705–762 (German). MR 0239221
- Robert J. Sacker and George R. Sell, The spectrum of an invariant submanifold, J. Differential Equations 38 (1980), no. 2, 135–160. MR 597797, DOI https://doi.org/10.1016/0022-0396%2880%2990001-7
- Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. MR 953967
- G. L. Watson, Integral quadratic forms, Cambridge Tracts in Mathematics and Mathematical Physics, No. 51, Cambridge University Press, New York, 1960. MR 0118704
Retrieve articles in Journal of the American Mathematical Society with MSC: 58F12, 35K57, 47H20, 58D25
Retrieve articles in all journals with MSC: 58F12, 35K57, 47H20, 58D25
Additional Information
Keywords:
Averaging,
gaps,
inertial manifolds,
invariant manifolds,
quadratic forms,
reaction diffusion equations,
spatial averaging
Article copyright:
© Copyright 1988
American Mathematical Society