Convergence of the random vortex method in two dimensions
HTML articles powered by AMS MathViewer
- by Ding-Gwo Long
- J. Amer. Math. Soc. 1 (1988), 779-804
- DOI: https://doi.org/10.1090/S0894-0347-1988-0958446-1
- PDF | Request permission
Abstract:
A theoretical framework for analyzing the random vortex method is presented. It extends and modifies the analysis of the inviscid vortex method in a natural and unified manner. The rate of convergence of the random vortex method in two dimensions is obtained by analyzing the consistency error and justifying the stability estimate. The sampling error introduced by the random motions of finitely many vortices is the dominant component of the consistency error in terms of order. It is estimated by applying Bennett’s inequality.References
- Christopher Anderson and Claude Greengard, On vortex methods, SIAM J. Numer. Anal. 22 (1985), no. 3, 413–440. MR 787568, DOI 10.1137/0722025
- J. Thomas Beale and Andrew Majda, Rates of convergence for viscous splitting of the Navier-Stokes equations, Math. Comp. 37 (1981), no. 156, 243–259. MR 628693, DOI 10.1090/S0025-5718-1981-0628693-0
- J. Thomas Beale and Andrew Majda, Vortex methods. I. Convergence in three dimensions, Math. Comp. 39 (1982), no. 159, 1–27. MR 658212, DOI 10.1090/S0025-5718-1982-0658212-5
- J. Thomas Beale and Andrew Majda, Vortex methods. I. Convergence in three dimensions, Math. Comp. 39 (1982), no. 159, 1–27. MR 658212, DOI 10.1090/S0025-5718-1982-0658212-5
- Alexandre Joel Chorin, Numerical study of slightly viscous flow, J. Fluid Mech. 57 (1973), no. 4, 785–796. MR 395483, DOI 10.1017/S0022112073002016 G. H. Cottet, Méthodes particulaires pour l’équation d’Euler dans le plan, Thèse de 3e cycle, l’Université Pièrre et Marie Curie, Paris, France, 1982.
- Gerald B. Folland, Introduction to partial differential equations, 2nd ed., Princeton University Press, Princeton, NJ, 1995. MR 1357411
- David Freedman, Brownian motion and diffusion, Holden-Day, San Francisco, Calif.-Cambridge-Amsterdam, 1971. MR 0297016
- Avner Friedman, Stochastic differential equations and applications. Vol. 1, Probability and Mathematical Statistics, Vol. 28, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0494490
- Jonathan Goodman, Convergence of the random vortex method, Comm. Pure Appl. Math. 40 (1987), no. 2, 189–220. MR 872384, DOI 10.1002/cpa.3160400204
- Ole Hald and Vincenza Mauceri del Prete, Convergence of vortex methods for Euler’s equations, Math. Comp. 32 (1978), no. 143, 791–809. MR 492039, DOI 10.1090/S0025-5718-1978-0492039-1
- Ding-Gwo Long, Convergence of the random vortex method in two dimensions, J. Amer. Math. Soc. 1 (1988), no. 4, 779–804. MR 958446, DOI 10.1090/S0894-0347-1988-0958446-1 —, Time discretization of the random vortex methods (to appear). —, Viscosity dependence of the sampling errors in the random vortex methods (to appear).
- C. Marchioro and M. Pulvirenti, Hydrodynamics in two dimensions and vortex theory, Comm. Math. Phys. 84 (1982), no. 4, 483–503. MR 667756
- David Pollard, Convergence of stochastic processes, Springer Series in Statistics, Springer-Verlag, New York, 1984. MR 762984, DOI 10.1007/978-1-4612-5254-2
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: J. Amer. Math. Soc. 1 (1988), 779-804
- MSC: Primary 65M10; Secondary 65M15, 76-08, 76C05, 76D05
- DOI: https://doi.org/10.1090/S0894-0347-1988-0958446-1
- MathSciNet review: 958446