Submanifolds in hyper-Kähler geometry
HTML articles powered by AMS MathViewer
- by Robert Bryant and Reese Harvey
- J. Amer. Math. Soc. 2 (1989), 1-31
- DOI: https://doi.org/10.1090/S0894-0347-1989-0953169-8
- PDF | Request permission
References
- Arnaud Beauville, Variétés kählériennes compactes avec $c_1=0$, Astérisque 126 (1985), 181–192 (French). Geometry of $K3$ surfaces: moduli and periods (Palaiseau, 1981/1982). MR 785234 F. Bogomolov, Hamiltonian Kähler manifolds, Soviet Math. Dokl. 19 (1978), 1462-1465. R. Bryant and R. Harvey, Stabilizers of calibrations (to appear).
- J. Dadok, R. Harvey, and F. Morgan, Calibrations on $\textbf {R}^8$, Trans. Amer. Math. Soc. 307 (1988), no. 1, 1–40. MR 936802, DOI 10.1090/S0002-9947-1988-0936802-1
- Reese Harvey and H. Blaine Lawson Jr., Calibrated geometries, Acta Math. 148 (1982), 47–157. MR 666108, DOI 10.1007/BF02392726 N. Hitchin, A. Karlhede, U. Lindström, and M. Roček, Hyperkähler metrics and super symmetry, Comm. Math. Phys. (to appear). A. Todorov, Every holomorphic symplectic manifold admits a Kähler metric, preprint.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: J. Amer. Math. Soc. 2 (1989), 1-31
- MSC: Primary 53C40; Secondary 32C10, 53C25, 53C55
- DOI: https://doi.org/10.1090/S0894-0347-1989-0953169-8
- MathSciNet review: 953169