A proof of projective determinacy
HTML articles powered by AMS MathViewer
- by Donald A. Martin and John R. Steel PDF
- J. Amer. Math. Soc. 2 (1989), 71-125 Request permission
References
- A. J. Dodd, The core model, London Mathematical Society Lecture Note Series, vol. 61, Cambridge University Press, Cambridge-New York, 1982. MR 652253
- M. Foreman, M. Magidor, and S. Shelah, Martin’s maximum, saturated ideals, and nonregular ultrafilters. I, Ann. of Math. (2) 127 (1988), no. 1, 1–47. MR 924672, DOI 10.2307/1971415
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- Alexander S. Kechris, Homogeneous trees and projective scales, Cabal Seminar 77–79 (Proc. Caltech-UCLA Logic Sem., 1977–79) Lecture Notes in Math., vol. 839, Springer, Berlin, 1981, pp. 33–73. MR 611167
- Azriel Lévy, Axiom schemata of strong infinity in axiomatic set theory, Pacific J. Math. 10 (1960), 223–238. MR 124205
- Azriel Lévy, Definability in axiomatic set theory. II, Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968) North-Holland, Amsterdam, 1970, pp. 129–145. MR 0268037
- Donald A. Martin, Measurable cardinals and analytic games, Fund. Math. 66 (1969/70), 287–291. MR 258637, DOI 10.4064/fm-66-3-287-291
- Donald A. Martin, Infinite games, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) Acad. Sci. Fennica, Helsinki, 1980, pp. 269–273. MR 562614
- D. A. Martin and R. M. Solovay, A basis theorem for $\sum _3^1$ sets of reals, Ann. of Math. (2) 89 (1969), 138–159. MR 255391, DOI 10.2307/1970813
- Donald A. Martin and John R. Steel, Projective determinacy, Proc. Nat. Acad. Sci. U.S.A. 85 (1988), no. 18, 6582–6586. MR 959109, DOI 10.1073/pnas.85.18.6582 —, Iteration trees (to appear).
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
- W. Hugh Woodin, Supercompact cardinals, sets of reals, and weakly homogeneous trees, Proc. Nat. Acad. Sci. U.S.A. 85 (1988), no. 18, 6587–6591. MR 959110, DOI 10.1073/pnas.85.18.6587
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: J. Amer. Math. Soc. 2 (1989), 71-125
- MSC: Primary 03E15; Secondary 03E55, 03E60
- DOI: https://doi.org/10.1090/S0894-0347-1989-0955605-X
- MathSciNet review: 955605