$\eta$-invariants and their adiabatic limits
Authors:
Jean-Michel Bismut and Jeff Cheeger
Journal:
J. Amer. Math. Soc. 2 (1989), 33-70
MSC:
Primary 58G10; Secondary 58C50, 58G12, 58G20
DOI:
https://doi.org/10.1090/S0894-0347-1989-0966608-3
MathSciNet review:
966608
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Michael Atiyah, The logarithm of the Dedekind $\eta $-function, Math. Ann. 278 (1987), no. 1-4, 335–380. MR 909232, DOI https://doi.org/10.1007/BF01458075
- M. F. Atiyah, H. Donnelly, and I. M. Singer, Eta invariants, signature defects of cusps, and values of $L$-functions, Ann. of Math. (2) 118 (1983), no. 1, 131–177. MR 707164, DOI https://doi.org/10.2307/2006957
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. MR 397797, DOI https://doi.org/10.1017/S0305004100049410
- M. F. Atiyah and I. M. Singer, Dirac operators coupled to vector potentials, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), no. 8, , Phys. Sci., 2597–2600. MR 742394, DOI https://doi.org/10.1073/pnas.81.8.2597
- Dan Barbasch and Henri Moscovici, $L^{2}$-index and the Selberg trace formula, J. Funct. Anal. 53 (1983), no. 2, 151–201. MR 722507, DOI https://doi.org/10.1016/0022-1236%2883%2990050-2
- Jean-Michel Bismut, The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math. 83 (1986), no. 1, 91–151. MR 813584, DOI https://doi.org/10.1007/BF01388755
- Jean-Michel Bismut, Transgressed Chern forms for Dirac operators, J. Funct. Anal. 77 (1988), no. 1, 32–50. MR 930389, DOI https://doi.org/10.1016/0022-1236%2888%2990075-4
- Jean-Michel Bismut and Jeff Cheeger, Invariants êta et indice des familles pour des variétés à bord, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 4, 127–130 (French, with English summary). MR 901625 ---, Families index for manifolds with boundary, superconnections and cones, J. Funct. Anal. (to appear).
- Jean-Michel Bismut and Daniel S. Freed, The analysis of elliptic families. I. Metrics and connections on determinant bundles, Comm. Math. Phys. 106 (1986), no. 1, 159–176. MR 853982
- J.-M. Bismut, H. Gillet, and C. Soulé, Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys. 115 (1988), no. 1, 49–78. MR 929146
- Jeff Cheeger, On the spectral geometry of spaces with cone-like singularities, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 5, 2103–2106. MR 530173, DOI https://doi.org/10.1073/pnas.76.5.2103
- Jeff Cheeger, Spectral geometry of singular Riemannian spaces, J. Differential Geom. 18 (1983), no. 4, 575–657 (1984). MR 730920
- Jeff Cheeger, $\eta $-invariants, the adiabatic approximation and conical singularities. I. The adiabatic approximation, J. Differential Geom. 26 (1987), no. 1, 175–221. MR 892036
- Arthur Weichung Chou, The Dirac operator on spaces with conical singularities and positive scalar curvatures, Trans. Amer. Math. Soc. 289 (1985), no. 1, 1–40. MR 779050, DOI https://doi.org/10.1090/S0002-9947-1985-0779050-8
- Alain Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257–360. MR 823176
- Alain Connes and Henri Moscovici, Transgression du caractère de Chern et cohomologie cyclique, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 18, 913–918 (French, with English summary). MR 873393 X. Dai, Ph.D. thesis, SUNY at Stony Brook (in preparation).
- Ezra Getzler, A short proof of the local Atiyah-Singer index theorem, Topology 25 (1986), no. 1, 111–117. MR 836727, DOI https://doi.org/10.1016/0040-9383%2886%2990008-X
- Peter B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Mathematics Lecture Series, vol. 11, Publish or Perish, Inc., Wilmington, DE, 1984. MR 783634
- Werner Müller, Signature defects of cusps of Hilbert modular varieties and values of $L$-series at $s=1$, J. Differential Geom. 20 (1984), no. 1, 55–119. MR 772126
- Werner Müller, Manifolds with cusps of rank one, Lecture Notes in Mathematics, vol. 1244, Springer-Verlag, Berlin, 1987. Spectral theory and $L^2$-index theorem. MR 891654
- Daniel Quillen, Superconnections and the Chern character, Topology 24 (1985), no. 1, 89–95. MR 790678, DOI https://doi.org/10.1016/0040-9383%2885%2990047-3 M. Stern, ${L^2}$-index theorems on locally symmetric spaces (preprint).
- Edward Witten, Global gravitational anomalies, Comm. Math. Phys. 100 (1985), no. 2, 197–229. MR 804460
Retrieve articles in Journal of the American Mathematical Society with MSC: 58G10, 58C50, 58G12, 58G20
Retrieve articles in all journals with MSC: 58G10, 58C50, 58G12, 58G20
Additional Information
Article copyright:
© Copyright 1989
American Mathematical Society