Diameters and eigenvalues
HTML articles powered by AMS MathViewer
- by F. R. K. Chung
- J. Amer. Math. Soc. 2 (1989), 187-196
- DOI: https://doi.org/10.1090/S0894-0347-1989-0965008-X
- PDF | Request permission
Abstract:
We derive a new upper bound for the diameter of a $k$-regular graph $G$ as a function of the eigenvalues of the adjacency matrix. Namely, suppose the adjacency matrix of $G$ has eigenvalues ${\lambda _1},{\lambda _2}, \ldots ,{\lambda _n}$ with $\left | {{\lambda _1}} \right | \geq \left | {{\lambda _2}} \right | \geq \cdots \geq \left | {{\lambda _n}} \right |$ where ${\lambda _1} = k$, $\lambda = \left | {{\lambda _2}} \right |$. Then the diameter $D(G)$ must satisfy \[ D(G) \leq \left \lceil {\log (n - 1)/{\text {log}}(k/\lambda )} \right \rceil \]. We will consider families of graphs whose eigenvalues can be explicitly determined. These graphs are determined by sums or differences of vertex labels. Namely, the pair $\left \{ {i,j} \right \}$ being an edge depends only on the value $i + j$ (or $i - j$ for directed graphs). We will show that these graphs are expander graphs with small diameters by using an inequality on character sums, which was recently proved by N. M. Katz.References
- M. Ajtai, J. Komlós, and E. Szemerédi, Sorting in $c\,\textrm {log}\,n$ parallel steps, Combinatorica 3 (1983), no. 1, 1–19. MR 716418, DOI 10.1007/BF02579338
- N. Alon and V. D. Milman, $\lambda _1,$ isoperimetric inequalities for graphs, and superconcentrators, J. Combin. Theory Ser. B 38 (1985), no. 1, 73–88. MR 782626, DOI 10.1016/0095-8956(85)90092-9
- N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986), no. 2, 83–96. Theory of computing (Singer Island, Fla., 1984). MR 875835, DOI 10.1007/BF02579166
- N. Alon, Z. Galil, and V. D. Milman, Better expanders and superconcentrators, J. Algorithms 8 (1987), no. 3, 337–347. MR 905991, DOI 10.1016/0196-6774(87)90014-9 W. N. Anderson, Jr. and T. D. Morley, Eigenvalues of the Laplacian of a graph, Univ. Maryland Technical Report TR-71-45, 1971.
- L. A. Bassalygo, Asymptotically optimal switching circuits, Problemy Peredachi Informatsii 17 (1981), no. 3, 81–88 (Russian); English transl., Problems Inform. Transmission 17 (1981), no. 3, 206–211. MR 673739
- József Beck, On size Ramsey number of paths, trees, and circuits. I, J. Graph Theory 7 (1983), no. 1, 115–129. MR 693028, DOI 10.1002/jgt.3190070115
- Clark T. Benson, Minimal regular graphs of girths eight and twelve, Canadian J. Math. 18 (1966), 1091–1094. MR 197342, DOI 10.4153/CJM-1966-109-8
- J. A. Bondy and M. Simonovits, Cycles of even length in graphs, J. Combinatorial Theory Ser. B 16 (1974), 97–105. MR 340095, DOI 10.1016/0095-8956(74)90052-5
- R. C. Bose and S. Chowla, Theorems in the additive theory of numbers, Comment. Math. Helv. 37 (1962/63), 141–147. MR 144877, DOI 10.1007/BF02566968
- W. G. Brown, On graphs that do not contain a Thomsen graph, Canad. Math. Bull. 9 (1966), 281–285. MR 200182, DOI 10.4153/CMB-1966-036-2
- Marshall W. Buck, Expanders and diffusers, SIAM J. Algebraic Discrete Methods 7 (1986), no. 2, 282–304. MR 830648, DOI 10.1137/0607032 Ying Cheng, Diameters of double loop local computer networks, 1988, preprint.
- F. R. K. Chung, On concentrators, superconcentrators, generalizers, and nonblocking networks, Bell System Tech. J. 58 (1979), no. 8, 1765–1777. MR 546309, DOI 10.1002/j.1538-7305.1979.tb02972.x
- Persi Diaconis, Group representations in probability and statistics, Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol. 11, Institute of Mathematical Statistics, Hayward, CA, 1988. MR 964069 M. Eichler, Quaternary quadratic forms and the Riemann hypothesis for congruence zeta functions, Arch. Math. 5 (1954), 355-366. P. Erdös, A. Rényi, and V. T. Sós, On a problem of graph theory, Studia Sci. Math. Hungar. 1 (1966), 215-235.
- R. J. Faudree and M. Simonovits, On a class of degenerate extremal graph problems, Combinatorica 3 (1983), no. 1, 83–93. MR 716423, DOI 10.1007/BF02579343
- P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981), no. 4, 357–368. MR 647986, DOI 10.1007/BF02579457
- J. Friedman and N. Pippenger, Expanding graphs contain all small trees, Combinatorica 7 (1987), no. 1, 71–76. MR 905153, DOI 10.1007/BF02579202
- Ofer Gabber and Zvi Galil, Explicit constructions of linear-sized superconcentrators, J. Comput. System Sci. 22 (1981), no. 3, 407–420. Special issued dedicated to Michael Machtey. MR 633542, DOI 10.1016/0022-0000(81)90040-4
- Yasutaka Ihara, Discrete subgroups of $\textrm {PL}(2,\,k_{\wp })$, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 272–278. MR 0205952 J. JáJa, Time space tradeoffs for some algebraic problems, Proc. 12th Annual ACM Sympos. on Theory of Computing, 1980, AMC, NY, 1980, pp. 339-350.
- S. Jimbo and A. Maruoka, Expanders obtained from affine transformations, Combinatorica 7 (1987), no. 4, 343–355. MR 931192, DOI 10.1007/BF02579322
- Nicholas M. Katz, An estimate for character sums, J. Amer. Math. Soc. 2 (1989), no. 2, 197–200. MR 965007, DOI 10.1090/S0894-0347-1989-0965007-8 —, Factoring polynomials in finite fields: an application of Lang-Weil to a problem in graph theory, 1988, preprint.
- Thomas Lengauer and Robert E. Tarjan, Asymptotically tight bounds on time-space trade-offs in a pebble game, J. Assoc. Comput. Mach. 29 (1982), no. 4, 1087–1130. MR 674259, DOI 10.1145/322344.322354
- A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), no. 3, 261–277. MR 963118, DOI 10.1007/BF02126799
- G. A. Margulis, Explicit constructions of expanders, Problemy Peredači Informacii 9 (1973), no. 4, 71–80 (Russian). MR 0484767 M. Pinsker, On the complexity of a concentrator, 7th Internat. Teletraffic Conf., Stockholm, June 1973, 318/1-318/4.
- Nicholas Pippenger, Superconcentrators, SIAM J. Comput. 6 (1977), no. 2, 298–304. MR 446750, DOI 10.1137/0206022 —, Advances in pebbling, Internat. Colloq. on Automation Languages and Programming, Vol. 9, 1982, pp. 407-417.
- Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni, Space bounds for a game on graphs, Math. Systems Theory 10 (1976/77), no. 3, 239–251. MR 451347, DOI 10.1007/BF01683275 C. S. Raghavendra and J. A. Silvester, A survey of multi-connected loop topologies for local computer networks, Computer Networks and ISDN Systems 2 (1986), 29-42. S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (9) (1916), 159-184.
- Wolfgang M. Schmidt, Equations over finite fields. An elementary approach, Lecture Notes in Mathematics, Vol. 536, Springer-Verlag, Berlin-New York, 1976. MR 0429733
- Robert Singleton, On minimal graphs of maximum even girth, J. Combinatorial Theory 1 (1966), 306–332. MR 201347
- R. Michael Tanner, Explicit concentrators from generalized $N$-gons, SIAM J. Algebraic Discrete Methods 5 (1984), no. 3, 287–293. MR 752035, DOI 10.1137/0605030
- Martin Tompa, Time-space tradeoffs for computing functions, using connectivity properties of their circuits, J. Comput. System Sci. 20 (1980), no. 2, 118–132. MR 574588, DOI 10.1016/0022-0000(80)90056-2
- Leslie G. Valiant, Graph-theoretic properties in computational complexity, J. Comput. System Sci. 13 (1976), no. 3, 278–285. MR 441008, DOI 10.1016/S0022-0000(76)80041-4
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: J. Amer. Math. Soc. 2 (1989), 187-196
- MSC: Primary 05C50; Secondary 05C38
- DOI: https://doi.org/10.1090/S0894-0347-1989-0965008-X
- MathSciNet review: 965008