Knots are determined by their complements
HTML articles powered by AMS MathViewer
- by C. McA. Gordon and J. Luecke
- J. Amer. Math. Soc. 2 (1989), 371-415
- DOI: https://doi.org/10.1090/S0894-0347-1989-0965210-7
- PDF | Request permission
References
- Marc Culler, C. McA. Gordon, J. Luecke, and Peter B. Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987), no. 2, 237–300. MR 881270, DOI 10.2307/1971311
- Jean Cerf, Sur les difféomorphismes de la sphère de dimension trois $(\Gamma _{4}=0)$, Lecture Notes in Mathematics, No. 53, Springer-Verlag, Berlin-New York, 1968 (French). MR 0229250
- C. D. Feustel and Wilbur Whitten, Groups and complements of knots, Canadian J. Math. 30 (1978), no. 6, 1284–1295. MR 511562, DOI 10.4153/CJM-1978-105-0
- David Gabai, Foliations and the topology of $3$-manifolds. II, J. Differential Geom. 26 (1987), no. 3, 461–478. MR 910017
- Leon Glass, A combinatorial analog of the Poincaré index theorem, J. Combinatorial Theory Ser. B 15 (1973), 264–268. MR 327558, DOI 10.1016/0095-8956(73)90040-3
- Klaus Johannson, Équivalences d’homotopie des variétés de dimension $3$, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), no. 23, Ai, A1009–A1010 (French). MR 391096
- R. A. Litherland, Surgery on knots in solid tori. II, J. London Math. Soc. (2) 22 (1980), no. 3, 559–569. MR 596334, DOI 10.1112/jlms/s2-22.3.559
- Heinrich Tietze, Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten, Monatsh. Math. Phys. 19 (1908), no. 1, 1–118 (German). MR 1547755, DOI 10.1007/BF01736688
- Friedhelm Waldhausen, Recent results on sufficiently large $3$-manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 21–38. MR 520520
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: J. Amer. Math. Soc. 2 (1989), 371-415
- MSC: Primary 57M25; Secondary 57M40
- DOI: https://doi.org/10.1090/S0894-0347-1989-0965210-7
- MathSciNet review: 965210