Hopf algebras up to homotopy
HTML articles powered by AMS MathViewer
- by David J. Anick
- J. Amer. Math. Soc. 2 (1989), 417-453
- DOI: https://doi.org/10.1090/S0894-0347-1989-0991015-7
- PDF | Request permission
Abstract:
Let $(A,d)$ denote a free $r$-reduced differential graded $R$-algebra, where $R$ is a commutative ring containing ${n^{ - 1}}$ for $1 \leq n < p$. Suppose a “diagonal” $\psi :A \to A \otimes A$ exists which satisfies the Hopf algebra axioms, including cocommutativity and coassociativity, up to homotopy. We show that $(A,d)$ must equal $U(L,\delta )$ for some free differential graded Lie algebra $(L,\delta )$ if $A$ is generated as an $R$-algebra in dimensions below $rp$. As a consequence, the rational singular chain complex on a topological monoid is seen to be the enveloping algebra of a Lie algebra. We also deduce, for an $r$-connected CW complex $X$ of dimension $\leq rp$, that the Adams-Hilton model over $R$ is an enveloping algebra and that $p\text {th}$ powers vanish in ${\tilde H^ * }(\Omega X;{{\mathbf {Z}}_p})$.References
- J. F. Adams, On the cobar construction, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 409–412. MR 79266, DOI 10.1073/pnas.42.7.409
- J. F. Adams and P. J. Hilton, On the chain algebra of a loop space, Comment. Math. Helv. 30 (1956), 305–330. MR 77929, DOI 10.1007/BF02564350
- David J. Anick, A model of Adams-Hilton type for fiber squares, Illinois J. Math. 29 (1985), no. 3, 463–502. MR 786733
- Marc Aubry and Jean-Michel Lemaire, Homotopies d’algèbres de Lie et de leurs algèbres enveloppantes, Algebraic topology—rational homotopy (Louvain-la-Neuve, 1986) Lecture Notes in Math., vol. 1318, Springer, Berlin, 1988, pp. 26–30 (French). MR 952569, DOI 10.1007/BFb0077792
- Hans Joachim Baues, Algebraic homotopy, Cambridge Studies in Advanced Mathematics, vol. 15, Cambridge University Press, Cambridge, 1989. MR 985099, DOI 10.1017/CBO9780511662522 H. J. Baues, S. Halperin, and J.-M. Lemaire, The uniqueness of rational homotopy (in preparation).
- H. J. Baues and J.-M. Lemaire, Minimal models in homotopy theory, Math. Ann. 225 (1977), no. 3, 219–242. MR 431172, DOI 10.1007/BF01425239
- F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, Torsion in homotopy groups, Ann. of Math. (2) 109 (1979), no. 1, 121–168. MR 519355, DOI 10.2307/1971269
- C. A. McGibbon and C. W. Wilkerson, Loop spaces of finite complexes at large primes, Proc. Amer. Math. Soc. 96 (1986), no. 4, 698–702. MR 826505, DOI 10.1090/S0002-9939-1986-0826505-X
- John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264. MR 174052, DOI 10.2307/1970615
- Hans J. Munkholm, DGA algebras as a Quillen model category. Relations to shm maps, J. Pure Appl. Algebra 13 (1978), no. 3, 221–232. MR 509162, DOI 10.1016/0022-4049(78)90009-9
- Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 0223432
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, DOI 10.2307/1970725
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078
- Daniel Tanré, Homotopie rationnelle: modèles de Chen, Quillen, Sullivan, Lecture Notes in Mathematics, vol. 1025, Springer-Verlag, Berlin, 1983 (French). MR 764769, DOI 10.1007/BFb0071482
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: J. Amer. Math. Soc. 2 (1989), 417-453
- MSC: Primary 16A24; Secondary 55P15
- DOI: https://doi.org/10.1090/S0894-0347-1989-0991015-7
- MathSciNet review: 991015