Oscillatory integrals and unique continuation for second order elliptic differential equations
HTML articles powered by AMS MathViewer
- by Christopher D. Sogge
- J. Amer. Math. Soc. 2 (1989), 491-515
- DOI: https://doi.org/10.1090/S0894-0347-1989-0999662-3
- PDF | Request permission
References
- S. Alinhac and M. S. Baouendi, Uniqueness for the characteristic Cauchy problem and strong unique continuation for higher order partial differential inequalities, Amer. J. Math. 102 (1980), no. 1, 179–217. MR 556891, DOI 10.2307/2374175
- Michael Beals, Charles Fefferman, and Robert Grossman, Strictly pseudoconvex domains in $\textbf {C}^{n}$, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 2, 125–322. MR 684898, DOI 10.1090/S0273-0979-1983-15087-5
- Lennart Carleson and Per Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287–299. (errata insert). MR 361607, DOI 10.4064/sm-44-3-287-299
- Charles Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330–336. MR 296602, DOI 10.2307/1970864
- Heinrich W. Guggenheimer, Differential geometry, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1977. Corrected reprint of the 1963 edition. MR 0493768
- Lars Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193–218. MR 609014, DOI 10.1007/BF02391913 —, Oscillatory integrals and multipliers on $F{L^p}$, Ark. Math. 11 (1971), 1-11.
- Lars Hörmander, Uniqueness theorems for second order elliptic differential equations, Comm. Partial Differential Equations 8 (1983), no. 1, 21–64. MR 686819, DOI 10.1080/03605308308820262 —, The analysis of linear partial differential operators, Vols. I-IV, Springer-Verlag, New York and Berlin, 1983, 1985.
- David Jerison, Carleman inequalities for the Dirac and Laplace operators and unique continuation, Adv. in Math. 62 (1986), no. 2, 118–134. MR 865834, DOI 10.1016/0001-8708(86)90096-4
- David Jerison and Carlos E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. (2) 121 (1985), no. 3, 463–494. With an appendix by E. M. Stein. MR 794370, DOI 10.2307/1971205
- C. E. Kenig, A. Ruiz, and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J. 55 (1987), no. 2, 329–347. MR 894584, DOI 10.1215/S0012-7094-87-05518-9
- Louis Nirenberg, Uniqueness in Cauchy problems for differential equations with constant leading coefficients, Comm. Pure Appl. Math. 10 (1957), 89–105. MR 86232, DOI 10.1002/cpa.3160100104
- Eric T. Sawyer, Unique continuation for Schrödinger operators in dimension three or less, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 3, 189–200 (English, with French summary). MR 762698
- Christopher D. Sogge, Oscillatory integrals and spherical harmonics, Duke Math. J. 53 (1986), no. 1, 43–65. MR 835795, DOI 10.1215/S0012-7094-86-05303-2
- Christopher D. Sogge, Concerning the $L^p$ norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988), no. 1, 123–138. MR 930395, DOI 10.1016/0022-1236(88)90081-X
- Christopher D. Sogge, On the convergence of Riesz means on compact manifolds, Ann. of Math. (2) 126 (1987), no. 2, 439–447. MR 908154, DOI 10.2307/1971356
- E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 307–355. MR 864375 M. Taylor, Pseudodifferential operators, Princeton Univ. Press, Princeton, NJ, 1981.
- François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 2, University Series in Mathematics, Plenum Press, New York-London, 1980. Fourier integral operators. MR 597145
- F. Treves, Solution of Cauchy problems modulo flat functions, Comm. Partial Differential Equations 1 (1976), no. 1, 45–72. MR 410063, DOI 10.1080/03605307608820003
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: J. Amer. Math. Soc. 2 (1989), 491-515
- MSC: Primary 35B60; Secondary 35J25
- DOI: https://doi.org/10.1090/S0894-0347-1989-0999662-3
- MathSciNet review: 999662