## The asymptotic behavior of properly embedded minimal surfaces of finite topology

HTML articles powered by AMS MathViewer

- by David Hoffman and William H. Meeks
- J. Amer. Math. Soc.
**2**(1989), 667-682 - DOI: https://doi.org/10.1090/S0894-0347-1989-1002088-X
- PDF | Request permission

## References

- Michael T. Anderson,
*Curvature estimates for minimal surfaces in $3$-manifolds*, Ann. Sci. École Norm. Sup. (4)**18**(1985), no. 1, 89–105. MR**803196** - J. L. Barbosa and M. do Carmo,
*On the size of a stable minimal surface in $R^{3}$*, Amer. J. Math.**98**(1976), no. 2, 515–528. MR**413172**, DOI 10.2307/2373899
M. Callahan, D. Hoffman, and W. H. Meeks III, - Michael Callahan, David Hoffman, and William H. Meeks III,
*The structure of singly-periodic minimal surfaces*, Invent. Math.**99**(1990), no. 3, 455–481. MR**1032877**, DOI 10.1007/BF01234428 - Celso J. Costa,
*Example of a complete minimal immersion in $\textbf {R}^3$ of genus one and three embedded ends*, Bol. Soc. Brasil. Mat.**15**(1984), no. 1-2, 47–54. MR**794728**, DOI 10.1007/BF02584707 - Yi Fang and William H. Meeks III,
*Some global properties of complete minimal surfaces of finite topology in $\textbf {R}^3$*, Topology**30**(1991), no. 1, 9–20. MR**1081931**, DOI 10.1016/0040-9383(91)90031-X - D. Fischer-Colbrie,
*On complete minimal surfaces with finite Morse index in three-manifolds*, Invent. Math.**82**(1985), no. 1, 121–132. MR**808112**, DOI 10.1007/BF01394782
D. Hoffman and W. H. Meeks III, - Antonio Ros,
*Properly embedded minimal surfaces with finite topology*, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 907–926. MR**2275628**
—, - D. Hoffman and W. H. Meeks III,
*A variational approach to the existence of complete embedded minimal surfaces*, Duke Math. J.**57**(1988), no. 3, 877–893. MR**975126**, DOI 10.1215/S0012-7094-88-05739-0 - David A. Hoffman and William Meeks III,
*A complete embedded minimal surface in $\textbf {R}^3$ with genus one and three ends*, J. Differential Geom.**21**(1985), no. 1, 109–127. MR**806705** - David Hoffman and William H. Meeks III,
*Properties of properly embedded minimal surfaces of finite topology*, Bull. Amer. Math. Soc. (N.S.)**17**(1987), no. 2, 296–300. MR**903736**, DOI 10.1090/S0273-0979-1987-15566-2 - Luquésio P. Jorge and William H. Meeks III,
*The topology of complete minimal surfaces of finite total Gaussian curvature*, Topology**22**(1983), no. 2, 203–221. MR**683761**, DOI 10.1016/0040-9383(83)90032-0 - Tzee Char Kuo,
*On $C^{0}$-sufficiency of jets of potential functions*, Topology**8**(1969), 167–171. MR**238338**, DOI 10.1016/0040-9383(69)90007-X - William H. Meeks III and Harold Rosenberg,
*The global theory of doubly periodic minimal surfaces*, Invent. Math.**97**(1989), no. 2, 351–379. MR**1001845**, DOI 10.1007/BF01389046
—, - William H. Meeks III and Shing Tung Yau,
*The classical Plateau problem and the topology of three-dimensional manifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehn’s lemma*, Topology**21**(1982), no. 4, 409–442. MR**670745**, DOI 10.1016/0040-9383(82)90021-0 - William W. Meeks III and Shing Tung Yau,
*The existence of embedded minimal surfaces and the problem of uniqueness*, Math. Z.**179**(1982), no. 2, 151–168. MR**645492**, DOI 10.1007/BF01214308 - Robert Osserman,
*A survey of minimal surfaces*, 2nd ed., Dover Publications, Inc., New York, 1986. MR**852409**
J. Pitts and H. Rubenstein, - Richard M. Schoen,
*Uniqueness, symmetry, and embeddedness of minimal surfaces*, J. Differential Geom.**18**(1983), no. 4, 791–809 (1984). MR**730928** - Leon Simon,
*Lectures on geometric measure theory*, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. MR**756417** - S. Smale,
*An infinite dimensional version of Sard’s theorem*, Amer. J. Math.**87**(1965), 861–866. MR**185604**, DOI 10.2307/2373250 - Brian White,
*New applications of mapping degrees to minimal surface theory*, J. Differential Geom.**29**(1989), no. 1, 143–162. MR**978083**

*Embedded minimal surfaces with four ends*, 1989, preprint.

*One-parameter families of embedded minimal surfaces*, 1989, preprint.

*The strong halfspace theorem for minimal surfaces*, 1987, preprint.

*The strong maximum principle for complete minimal surfaces in flat*$3$

*-manifolds*, 1988, preprint. —,

*The geometry of periodic minimal surfaces*, 1988, preprint. W. H. Meeks III and S. T. Yau,

*The topological uniqueness theorem for minimal surfaces of finite type*, 1987, preprint.

*Existence of minimal surfaces of bounded topological type in three-manifolds*, Proc. Centre Math. Anal. Austral. Nat. Univ., Vol. 10, Canberra, Australia, 1987.

## Bibliographic Information

- © Copyright 1989 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**2**(1989), 667-682 - MSC: Primary 53A10; Secondary 49F10
- DOI: https://doi.org/10.1090/S0894-0347-1989-1002088-X
- MathSciNet review: 1002088