Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra
HTML articles powered by AMS MathViewer
- by George Lusztig
- J. Amer. Math. Soc. 3 (1990), 257-296
- DOI: https://doi.org/10.1090/S0894-0347-1990-1013053-9
- PDF | Request permission
References
- Nicolas Bourbaki, Éléments de mathématique, Masson, Paris, 1981 (French). Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6]. MR 647314
- Claude Chevalley, Certains schémas de groupes semi-simples, Séminaire Bourbaki, Vol. 6, Soc. Math. France, Paris, 1995, pp. Exp. No. 219, 219–234 (French). MR 1611814
- Charles W. Curtis, Representations of Lie algebras of classical type with applications to linear groups, J. Math. Mech. 9 (1960), 307–326. MR 0110766, DOI 10.1512/iumj.1960.9.59018
- V. G. Drinfel′d, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985), no. 5, 1060–1064 (Russian). MR 802128 M. Dyer, Hecke algebras and reflections in Coxeter groups, Ph. D. thesis, University of Sydney, 1987.
- Michio Jimbo, A $q$-difference analogue of $U({\mathfrak {g}})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63–69. MR 797001, DOI 10.1007/BF00704588
- Bertram Kostant, Groups over $Z$, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 90–98. MR 0207713
- G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), no. 2, 237–249. MR 954661, DOI 10.1016/0001-8708(88)90056-4
- G. Lusztig, Modular representations and quantum groups, Classical groups and related topics (Beijing, 1987) Contemp. Math., vol. 82, Amer. Math. Soc., Providence, RI, 1989, pp. 59–77. MR 982278, DOI 10.1090/conm/082/982278 —, On quantum groups, J. Algebra (to appear).
- Marc Rosso, Finite-dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra, Comm. Math. Phys. 117 (1988), no. 4, 581–593. MR 953821, DOI 10.1007/BF01218386
- Robert Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33–56. MR 155937, DOI 10.1017/S0027763000011016
- Daya-Nand Verma, Structure of certain induced representations of complex semisimple Lie algebras, Bull. Amer. Math. Soc. 74 (1968), 160–166. MR 218417, DOI 10.1090/S0002-9904-1968-11921-4
- L. Alvarez-Gaumé, C. Gomez, and G. Sierra, Quantum group interpretation of some conformal field theories, Phys. Lett. B 220 (1989), no. 1-2, 142–152. MR 990842, DOI 10.1016/0370-2693(89)90027-0
- Gregory Moore and Nicolai Reshetikhin, A comment on quantum group symmetry in conformal field theory, Nuclear Phys. B 328 (1989), no. 3, 557–574. MR 1030450, DOI 10.1016/0550-3213(89)90219-8
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: J. Amer. Math. Soc. 3 (1990), 257-296
- MSC: Primary 17B37; Secondary 16W30, 20G40
- DOI: https://doi.org/10.1090/S0894-0347-1990-1013053-9
- MathSciNet review: 1013053