Isospectral conformal metrics on $3$-manifolds
HTML articles powered by AMS MathViewer
- by Sun-Yung A. Chang and Paul C.-P. Yang
- J. Amer. Math. Soc. 3 (1990), 117-145
- DOI: https://doi.org/10.1090/S0894-0347-1990-1015647-3
- PDF | Request permission
References
- T. Aubin, The scalar curvature, Differential geometry and relativity, Mathematical Phys. and Appl. Math., Vol. 3, Reidel, Dordrecht, 1976, pp. 5–18. MR 0433500
- Robert Brooks, Peter Perry, and Paul Yang, Isospectral sets of conformally equivalent metrics, Duke Math. J. 58 (1989), no. 1, 131–150. MR 1016417, DOI 10.1215/S0012-7094-89-05808-0
- Sun-Yung A. Chang and Paul C. Yang, Compactness of isospectral conformal metrics on $S^3$, Comment. Math. Helv. 64 (1989), no. 3, 363–374. MR 998854, DOI 10.1007/BF02564682
- Sun-Yung A. Chang and Paul C. Yang, The conformal deformation equation and isospectral set of conformal metrics, Recent developments in geometry (Los Angeles, CA, 1987) Contemp. Math., vol. 101, Amer. Math. Soc., Providence, RI, 1989, pp. 165–178. MR 1034980, DOI 10.1090/conm/101/1034980
- Peter B. Gilkey, Leading terms in the asymptotics of the heat equation, Geometry of random motion (Ithaca, N.Y., 1987) Contemp. Math., vol. 73, Amer. Math. Soc., Providence, RI, 1988, pp. 79–85. MR 954631, DOI 10.1090/conm/073/954631
- D. Gilbarg and James Serrin, On isolated singularities of solutions of second order elliptic differential equations, J. Analyse Math. 4 (1955/56), 309–340. MR 81416, DOI 10.1007/BF02787726
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317 R. Melrose, Isospectral sets of drumheads are compact in ${\mathcal {C}^\infty }$, MSRI preprint.
- S. Minakshisundaram and Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242–256. MR 31145, DOI 10.4153/cjm-1949-021-5
- H. P. McKean Jr. and I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differential Geometry 1 (1967), no. 1, 43–69. MR 217739
- B. Osgood, R. Phillips, and P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal. 80 (1988), no. 1, 148–211. MR 960228, DOI 10.1016/0022-1236(88)90070-5
- B. Osgood, R. Phillips, and P. Sarnak, Compact isospectral sets of surfaces, J. Funct. Anal. 80 (1988), no. 1, 212–234. MR 960229, DOI 10.1016/0022-1236(88)90071-7
- B. Osgood, R. Phillips, and P. Sarnak, Moduli space, heights and isospectral sets of plane domains, Ann. of Math. (2) 129 (1989), no. 2, 293–362. MR 986795, DOI 10.2307/1971449
- Richard Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), no. 2, 479–495. MR 788292
- Joseph A. Wolf, Spaces of constant curvature, McGraw-Hill Book Co., New York-London-Sydney, 1967. MR 0217740
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: J. Amer. Math. Soc. 3 (1990), 117-145
- MSC: Primary 58G25; Secondary 35P05, 53C20, 58G11
- DOI: https://doi.org/10.1090/S0894-0347-1990-1015647-3
- MathSciNet review: 1015647