The classification of links up to link-homotopy
Authors:
Nathan Habegger and Xiao-Song Lin
Journal:
J. Amer. Math. Soc. 3 (1990), 389-419
MSC:
Primary 57M25
DOI:
https://doi.org/10.1090/S0894-0347-1990-1026062-0
MathSciNet review:
1026062
Full-text PDF Free Access
References | Similar Articles | Additional Information
- E. Artin, Theory of braids, Ann. of Math. (2) 48 (1947), 101–126. MR 19087, DOI https://doi.org/10.2307/1969218
- Gilbert Baumslag, Lecture notes on nilpotent groups, Regional Conference Series in Mathematics, No. 2, American Mathematical Society, Providence, R.I., 1971. MR 0283082
- Joan S. Birman, Braids, links, and mapping class groups, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 82. MR 0375281 J. Birman and W. Menasco, (1) Studying links via closed braids, (2) Studying links via closed braids II: Classifying links which are closed $3$-braids, (3) Closed braid representatives of split links and composite links, (4) Closed braid representatives of the unlink, preprints, Columbia Univ., 1988.
- Tim D. Cochran, Derivatives of links: Milnor’s concordance invariants and Massey’s products, Mem. Amer. Math. Soc. 84 (1990), no. 427, x+73. MR 1042041, DOI https://doi.org/10.1090/memo/0427 J.-Y. le Dimet, Cobordisme d’enlacements de disques, Mém. Soc. Math. France, no. 32, Supplément Bull. Soc. Math. France 116 (1988). R. Fenn (ed.), Low dimensional topology, London Math. Soc. Lecture Note Ser., vol. 95, Cambridge Univ. Press, London, 1985.
- Deborah Louise Goldsmith, Homotopy of braids—in answer to a question of E. Artin, Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973) Springer, Berlin, 1974, pp. 91–96. Lecture Notes in Math., Vol. 375. MR 0356021
- Deborah L. Goldsmith, Concordance implies homotopy for classical links in $M^{3}$, Comment. Math. Helv. 54 (1979), no. 3, 347–355. MR 543335, DOI https://doi.org/10.1007/BF02566279
- Charles H. Giffen, Link concordance implies link homotopy, Math. Scand. 45 (1979), no. 2, 243–254. MR 580602, DOI https://doi.org/10.7146/math.scand.a-11839 N. Habegger and X.-S. Lin, On Milnor’s $\overline \mu$-invariants and concordance classification of links, (in preparation).
- Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI https://doi.org/10.1090/S0273-0979-1985-15304-2
- J. P. Levine, Surgery on links and the $\overline \mu $-invariants, Topology 26 (1987), no. 1, 45–61. MR 880507, DOI https://doi.org/10.1016/0040-9383%2887%2990020-6
- J. P. Levine, An approach to homotopy classification of links, Trans. Amer. Math. Soc. 306 (1988), no. 1, 361–387. MR 927695, DOI https://doi.org/10.1090/S0002-9947-1988-0927695-7 X.-S. Lin, Artin-type representation theorems and Milnor’s $\overline \mu$-invariants, Ph.D. thesis, Univ. of California, San Diego, 1988.
- W. S. Massey, Higher order linking numbers, Conf. on Algebraic Topology (Univ. of Illinois at Chicago Circle, Chicago, Ill., 1968) Univ. of Illinois at Chicago Circle, Chicago, Ill., 1969, pp. 174–205. MR 0254832
- John Milnor, Link groups, Ann. of Math. (2) 59 (1954), 177–195. MR 71020, DOI https://doi.org/10.2307/1969685
- John Milnor, Isotopy of links. Algebraic geometry and topology, A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N. J., 1957, pp. 280–306. MR 0092150 W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory, Pure and Appl. Math., vol. XIII, Interscience, NY, 1966.
- Kent E. Orr, Homotopy invariants of links, Invent. Math. 95 (1989), no. 2, 379–394. MR 974908, DOI https://doi.org/10.1007/BF01393902
- Richard Porter, Milnor’s $\bar \mu $-invariants and Massey products, Trans. Amer. Math. Soc. 257 (1980), no. 1, 39–71. MR 549154, DOI https://doi.org/10.1090/S0002-9947-1980-0549154-9
- John Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170–181. MR 175956, DOI https://doi.org/10.1016/0021-8693%2865%2990017-7
- V. G. Turaev, The Milnor invariants and Massey products, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 66 (1976), 189–203, 209–210 (Russian, with English summary). Studies in topology, II. MR 0451251 E. Witten, Quantum field theory and the Jones polynomial, preprint, Institute for Advanced Study, Princeton, NJ, 1988.
Retrieve articles in Journal of the American Mathematical Society with MSC: 57M25
Retrieve articles in all journals with MSC: 57M25
Additional Information
Article copyright:
© Copyright 1990
American Mathematical Society