Kategorie $\mathcal {O}$, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe
HTML articles powered by AMS MathViewer
- by Wolfgang Soergel PDF
- J. Amer. Math. Soc. 3 (1990), 421-445 Request permission
Abstract:
We give a description of “the algebra of category $\mathcal {O}$” which is explicit enough to prove that the structure of the direct summands of $\mathcal {O}$ depends only on the integral Weyl group and the singularity of the central character, as well as to establish a weak version of the duality conjectures of Beilinson and Ginsburg [BGi]. As a byproduct we describe the intersection cohomology of Schubert varieties as modules over global cohomology ring. These are certain indecomposable graded self-dual modules over the coinvariant algebra of the Weyl group, via the Borel picture for the global cohomology ring of a flag manifold. They play a central role in this article and should have an interesting future.References
- A. A. Beilinson and V. A. Ginsburg, Mixed categories, Ext-duality and representations (results and conjectures), preprint, 1986.
- A. A. Beĭlinson, V. A. Ginsburg, and V. V. Schechtman, Koszul duality, J. Geom. Phys. 5 (1988), no. 3, 317–350. MR 1048505, DOI 10.1016/0393-0440(88)90028-9 J. N. Bernstein, The trace of projective functors, erscheint in Colloque Dixmier (Mai 1989).
- J. N. Bernstein and S. I. Gel′fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245–285. MR 581584
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Schubert cells, and the cohomology of the spaces $G/P$, Uspehi Mat. Nauk 28 (1973), no. 3(171), 3–26 (Russian). MR 0429933 —, Category of $\mathfrak {g}$-modules, Functional Anal. Appl. 10 (1976), 87-92.
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821, DOI 10.24033/bsmf.1583
- O. Gabber and A. Joseph, Towards the Kazhdan-Lusztig conjecture, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 3, 261–302. MR 644519, DOI 10.24033/asens.1406 R. Irving, Projective modules in the category $\mathcal {O}$, preprint, 1984.
- Jens Carsten Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 3, Springer-Verlag, Berlin, 1983 (German). MR 721170, DOI 10.1007/978-3-642-68955-0
- A. Joseph, Kostant’s problem, Goldie rank and the Gel′fand-Kirillov conjecture, Invent. Math. 56 (1980), no. 3, 191–213. MR 561970, DOI 10.1007/BF01390044
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- David Kazhdan and George Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 185–203. MR 573434
- George Lusztig and David A. Vogan Jr., Singularities of closures of $K$-orbits on flag manifolds, Invent. Math. 71 (1983), no. 2, 365–379. MR 689649, DOI 10.1007/BF01389103
- Wolfgang Soergel, Universelle versus relative Einhüllende: Eine geometrische Untersuchung von Quotienten von universellen Einhüllenden halbeinfacher Lie-Algebren, Math. Ann. 284 (1989), no. 2, 177–198 (German). MR 1000106, DOI 10.1007/BF01442871 —, Parabolisch-singuläre Dualität für Kategorie $\mathcal {O}$, MPI-preprint, 1989.
- Jean-Luc Brylinski, (Co)-homologie d’intersection et faisceaux pervers, Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982, pp. 129–157 (French). MR 689529
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: J. Amer. Math. Soc. 3 (1990), 421-445
- MSC: Primary 17B35
- DOI: https://doi.org/10.1090/S0894-0347-1990-1029692-5
- MathSciNet review: 1029692