On complete manifolds with nonnegative Ricci curvature
HTML articles powered by AMS MathViewer
- by Uwe Abresch and Detlef Gromoll
- J. Amer. Math. Soc. 3 (1990), 355-374
- DOI: https://doi.org/10.1090/S0894-0347-1990-1030656-6
- PDF | Request permission
References
- Uwe Abresch, Lower curvature bounds, Toponogov’s theorem, and bounded topology, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 4, 651–670. MR 839689
- Michael T. Anderson, On the topology of complete manifolds of nonnegative Ricci curvature, Topology 29 (1990), no. 1, 41–55. MR 1046624, DOI 10.1016/0040-9383(90)90024-E
- Simon Aloff and Nolan R. Wallach, An infinite family of distinct $7$-manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc. 81 (1975), 93–97. MR 370624, DOI 10.1090/S0002-9904-1975-13649-4
- Lionel Bérard-Bergery, Quelques exemples de variétés riemanniennes complètes non compactes à courbure de Ricci positive, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 4, 159–161 (French, with English summary). MR 832061
- Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. MR 0169148
- Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Mathematical Library, Vol. 9, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0458335
- Jeff Cheeger and Detlef Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972), 413–443. MR 309010, DOI 10.2307/1970819
- Jeff Cheeger and Detlef Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971/72), 119–128. MR 303460
- Jeff Cheeger, Mikhail Gromov, and Michael Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geometry 17 (1982), no. 1, 15–53. MR 658471
- Jost Eschenburg and Ernst Heintze, An elementary proof of the Cheeger-Gromoll splitting theorem, Ann. Global Anal. Geom. 2 (1984), no. 2, 141–151. MR 777905, DOI 10.1007/BF01876506
- Gregory J. Galloway, A generalization of the Cheeger-Gromoll splitting theorem, Arch. Math. (Basel) 47 (1986), no. 4, 372–375. MR 866527, DOI 10.1007/BF01191365 D. Gromoll and W. T. Meyer, On complete manifolds of positive curvature, Ann. of Math. (2) 90 (1969), 75-90.
- Detlef Gromoll and Wolfgang T. Meyer, Examples of complete manifolds with positive Ricci curvature, J. Differential Geom. 21 (1985), no. 2, 195–211. MR 816669
- Michael Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), no. 2, 179–195. MR 630949, DOI 10.1007/BF02566208 M. Gromov, J. Lafontaine, and P. Pansu, Structures métriques pour les variétés Riemanniennes, Nathan, Paris, 1982.
- Karsten Grove, Metric differential geometry, Differential geometry (Lyngby, 1985) Lecture Notes in Math., vol. 1263, Springer, Berlin, 1987, pp. 171–227. MR 905882, DOI 10.1007/BFb0078613
- Karsten Grove and Katsuhiro Shiohama, A generalized sphere theorem, Ann. of Math. (2) 106 (1977), no. 2, 201–211. MR 500705, DOI 10.2307/1971164
- H. Blaine Lawson Jr., The unknottedness of minimal embeddings, Invent. Math. 11 (1970), 183–187. MR 287447, DOI 10.1007/BF01404649
- J. Milnor, A note on curvature and fundamental group, J. Differential Geometry 2 (1968), 1–7. MR 232311
- Vitali D. Milman and Gideon Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. MR 856576
- William Meeks III, Leon Simon, and Shing Tung Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. (2) 116 (1982), no. 3, 621–659. MR 678484, DOI 10.2307/2007026
- Ji-Ping Sha and DaGang Yang, Examples of manifolds of positive Ricci curvature, J. Differential Geom. 29 (1989), no. 1, 95–103. MR 978078 —, Positive Ricci curvature on the connected sums of ${S^n} \times {S^m}$, J. Differential Geom. (to appear).
- R. Schoen and Shing Tung Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110 (1979), no. 1, 127–142. MR 541332, DOI 10.2307/1971247
- Shing Tung Yau (ed.), Seminar on Differential Geometry, Annals of Mathematics Studies, No. 102, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. Papers presented at seminars held during the academic year 1979–1980. MR 645728
- Shing Tung Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659–670. MR 417452, DOI 10.1512/iumj.1976.25.25051
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: J. Amer. Math. Soc. 3 (1990), 355-374
- MSC: Primary 53C21
- DOI: https://doi.org/10.1090/S0894-0347-1990-1030656-6
- MathSciNet review: 1030656