Nodal sets for eigenfunctions of the Laplacian on surfaces
HTML articles powered by AMS MathViewer
- by Harold Donnelly and Charles Fefferman
- J. Amer. Math. Soc. 3 (1990), 333-353
- DOI: https://doi.org/10.1090/S0894-0347-1990-1035413-2
- PDF | Request permission
References
- N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. (9) 36 (1957), 235–249. MR 92067
- Jochen Brüning, Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators, Math. Z. 158 (1978), no. 1, 15–21 (German). MR 478247, DOI 10.1007/BF01214561 T. Carleman, Sur les systémes linéares aux dérivées partielles du premier ordre á deux variables, C. R. Acad. Sci. Paris Ser. I Math. 197 (1933), 471-474.
- Jeff Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970), 61–74. MR 263092, DOI 10.2307/2373498
- Harold Donnelly and Charles Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math. 93 (1988), no. 1, 161–183. MR 943927, DOI 10.1007/BF01393691
- Harold Donnelly and Charles Fefferman, Nodal sets of eigenfunctions: Riemannian manifolds with boundary, Analysis, et cetera, Academic Press, Boston, MA, 1990, pp. 251–262. MR 1039348
- Samuel I. Goldberg, Curvature and homology, Pure and Applied Mathematics, Vol. XI, Academic Press, New York-London, 1962. MR 0139098
- Robert Hardt and Leon Simon, Nodal sets for solutions of elliptic equations, J. Differential Geom. 30 (1989), no. 2, 505–522. MR 1010169
- Jürgen Jost, Harmonic maps between surfaces, Lecture Notes in Mathematics, vol. 1062, Springer-Verlag, Berlin, 1984. MR 754769, DOI 10.1007/BFb0100160
- N. S. Nadirashvili, The length of the nodal curve of an eigenfunction of the Laplace operator, Uspekhi Mat. Nauk 43 (1988), no. 4(262), 219–220 (Russian); English transl., Russian Math. Surveys 43 (1988), no. 4, 227–228. MR 969585, DOI 10.1070/RM1988v043n04ABEH001905
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: J. Amer. Math. Soc. 3 (1990), 333-353
- MSC: Primary 58G25; Secondary 35P05
- DOI: https://doi.org/10.1090/S0894-0347-1990-1035413-2
- MathSciNet review: 1035413