Harmonic bundles on noncompact curves
HTML articles powered by AMS MathViewer
- by Carlos T. Simpson
- J. Amer. Math. Soc. 3 (1990), 713-770
- DOI: https://doi.org/10.1090/S0894-0347-1990-1040197-8
- PDF | Request permission
References
- Lars V. Ahlfors, An extension of Schwarz’s lemma, Trans. Amer. Math. Soc. 43 (1938), no. 3, 359–364. MR 1501949, DOI 10.1090/S0002-9947-1938-1501949-6
- Kevin Corlette, Flat $G$-bundles with canonical metrics, J. Differential Geom. 28 (1988), no. 3, 361–382. MR 965220
- Maurizio Cornalba and Phillip Griffiths, Analytic cycles and vector bundles on non-compact algebraic varieties, Invent. Math. 28 (1975), 1–106. MR 367263, DOI 10.1007/BF01389905
- Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin-New York, 1970 (French). MR 0417174
- S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1–26. MR 765366, DOI 10.1112/plms/s3-50.1.1
- S. K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987), no. 1, 231–247. MR 885784, DOI 10.1215/S0012-7094-87-05414-7
- S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. (3) 55 (1987), no. 1, 127–131. MR 887285, DOI 10.1112/plms/s3-55.1.127
- James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 164306, DOI 10.2307/2373037 P. Griffiths, Periods of integrals on algebraic manifolds. I, II, Amer. J. Math. 90 (1968); III, Inst. Hautes Études Sci. Publ. Math. 38 (1970).
- Phillip Griffiths (ed.), Topics in transcendental algebraic geometry, Annals of Mathematics Studies, vol. 106, Princeton University Press, Princeton, NJ, 1984. MR 756842, DOI 10.1515/9781400881659
- Phillip Griffiths and Wilfried Schmid, Locally homogeneous complex manifolds, Acta Math. 123 (1969), 253–302. MR 259958, DOI 10.1007/BF02392390
- Richard S. Hamilton, Harmonic maps of manifolds with boundary, Lecture Notes in Mathematics, Vol. 471, Springer-Verlag, Berlin-New York, 1975. MR 0482822
- N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), no. 1, 59–126. MR 887284, DOI 10.1112/plms/s3-55.1.59
- M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 134–142. MR 726425, DOI 10.1007/BFb0099962
- B. Malgrange, Polynômes de Bernstein-Sato et cohomologie évanescente, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 243–267 (French). MR 737934
- V. B. Mehta and C. S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980), no. 3, 205–239. MR 575939, DOI 10.1007/BF01420526
- M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 82 (1965), 540–567. MR 184252, DOI 10.2307/1970710
- Wilfried Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211–319. MR 382272, DOI 10.1007/BF01389674
- Carlos T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988), no. 4, 867–918. MR 944577, DOI 10.1090/S0894-0347-1988-0944577-9 —, Higgs bundles and local systems, preprint, Princeton Univ., 1989.
- K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S257–S293. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861491, DOI 10.1002/cpa.3160390714
- Steven Zucker, Hodge theory with degenerating coefficients. $L_{2}$ cohomology in the Poincaré metric, Ann. of Math. (2) 109 (1979), no. 3, 415–476. MR 534758, DOI 10.2307/1971221
- Hélène Esnault and Eckart Viehweg, Logarithmic de Rham complexes and vanishing theorems, Invent. Math. 86 (1986), no. 1, 161–194. MR 853449, DOI 10.1007/BF01391499
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: J. Amer. Math. Soc. 3 (1990), 713-770
- MSC: Primary 58E20; Secondary 14C30, 14H60, 32G20
- DOI: https://doi.org/10.1090/S0894-0347-1990-1040197-8
- MathSciNet review: 1040197