Euler’s “exemplum memorabile inductionis fallacis” and $q$-trinomial coefficients
HTML articles powered by AMS MathViewer
- by George E. Andrews
- J. Amer. Math. Soc. 3 (1990), 653-669
- DOI: https://doi.org/10.1090/S0894-0347-1990-1040390-4
- PDF | Request permission
Abstract:
The trinomial coefficients are defined centrally by $\Sigma _{j = - m}^\infty {(_j^m)_2}{x^j} = {(1 + x + {x^{ - 1}})^m}$. Euler observed that for $- 1 \leq m \leq 7$, $3{(_{ \;0}^{m + 1})_2} - {(_{ \;0}^{m + 2})_2} = {F_m}({F_m} + 1)$, where ${F_m}$ is the $m$th Fibonacci number. The assertion is false for $m > 7$. We prove general identities—one of which reduces to Euler’s assertion for $m \leq 7$. Our main object is to analyze $q$-analogs extending Euler’s observation. Among other things we are led to finite versions of dissections of the Rogers-Ramanujan identities into even and odd parts.References
- George E. Andrews, Sieves in the theory of partitions, Amer. J. Math. 94 (1972), 1214–1230. MR 319883, DOI 10.2307/2373571
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013
- George E. Andrews, The hard-hexagon model and Rogers-Ramanujan type identities, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 9, 5290–5292. MR 629656, DOI 10.1073/pnas.78.9.5290
- George E. Andrews, Use and extension of Frobenius’ representation of partitions, Enumeration and design (Waterloo, Ont., 1982) Academic Press, Toronto, ON, 1984, pp. 51–65. MR 782308
- George E. Andrews and R. J. Baxter, Lattice gas generalization of the hard hexagon model. III. $q$-trinomial coefficients, J. Statist. Phys. 47 (1987), no. 3-4, 297–330. MR 894396, DOI 10.1007/BF01007513
- David V. Chudnovsky and Richard D. Jenks (eds.), Computer algebra, Lecture Notes in Pure and Applied Mathematics, vol. 113, Marcel Dekker, Inc., New York, 1989. Papers from the International Conference on Computer Algebra as a Tool for Research in Mathematics and Physics held at New York University, New York, April 5–6, 1984. MR 1002975
- George E. Andrews, R. J. Baxter, D. M. Bressoud, W. H. Burge, P. J. Forrester, and G. Viennot, Partitions with prescribed hook differences, European J. Combin. 8 (1987), no. 4, 341–350. MR 930170, DOI 10.1016/S0195-6698(87)80041-0
- George E. Andrews, R. J. Baxter, and P. J. Forrester, Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities, J. Statist. Phys. 35 (1984), no. 3-4, 193–266. MR 748075, DOI 10.1007/BF01014383
- David M. Bressoud, Extension of the partition sieve, J. Number Theory 12 (1980), no. 1, 87–100. MR 566873, DOI 10.1016/0022-314X(80)90077-3
- William H. Burge, A correspondence between partitions related to generalizations of the Rogers-Ramanujan identities, Discrete Math. 34 (1981), no. 1, 9–15. MR 605226, DOI 10.1016/0012-365X(81)90017-0
- Louis Comtet, Advanced combinatorics, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. The art of finite and infinite expansions. MR 0460128, DOI 10.1007/978-94-010-2196-8 L. Euler, Observations analyticae, Novi Commentarii Academiae Scientarum Petropolitanae 11 (1765), 124-143; also in Opera Omnia, Series 1, vol. 15, Teubner, pp. 50-69. I. Schur, Ein Beitrag zur additiven Zahlentheorie und zur theorie der Kettenbrüche, S.-B. Preuss. Akad. Wiss. Phys.-Math. Kl., 1917, pp. 302-321; reprinted in Gesammelte Abhandlungen, vol. 2, Springer, Berlin, 1973, pp. 117-136.
- L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147–167. MR 49225, DOI 10.1112/plms/s2-54.2.147 M. Spiegel, Finite differences and difference equations, McGraw-Hill, New York, 1971. G. N. Watson, Proof of certain identities in combinatory analysis, J. Indian Math. Soc. 20 (1934), 57-69.
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: J. Amer. Math. Soc. 3 (1990), 653-669
- MSC: Primary 05A10; Secondary 05A30, 11B65
- DOI: https://doi.org/10.1090/S0894-0347-1990-1040390-4
- MathSciNet review: 1040390