A Glimm-Effros dichotomy for Borel equivalence relations
HTML articles powered by AMS MathViewer
- by L. A. Harrington, A. S. Kechris and A. Louveau
- J. Amer. Math. Soc. 3 (1990), 903-928
- DOI: https://doi.org/10.1090/S0894-0347-1990-1057041-5
- PDF | Request permission
References
- John P. Burgess, Equivalences generated by families of Borel sets, Proc. Amer. Math. Soc. 69 (1978), no. 2, 323–326. MR 476524, DOI 10.1090/S0002-9939-1978-0476524-6
- John P. Burgess, A selection theorem for group actions, Pacific J. Math. 80 (1979), no. 2, 333–336. MR 539418
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185 R. Dougherty, S. Jackson, and A. Kechris, The structure of equivalence relations on Polish spaces, I: An extension of the Glimm-Effros dichotomy, circulated notes, 1989. —, The structure of equivalence relations on Polish spaces, II: Countable equivalence relations or descriptive dynamics, circulated notes, 1989.
- Edward G. Effros, Transformation groups and $C^{\ast }$-algebras, Ann. of Math. (2) 81 (1965), 38–55. MR 174987, DOI 10.2307/1970381
- Edward G. Effros, Polish transformation groups and classification problems, General topology and modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980) Academic Press, New York-London, 1981, pp. 217–227. MR 619045
- James Glimm, Type I $C^{\ast }$-algebras, Ann. of Math. (2) 73 (1961), 572–612. MR 124756, DOI 10.2307/1970319
- James Glimm, Locally compact transformation groups, Trans. Amer. Math. Soc. 101 (1961), 124–138. MR 136681, DOI 10.1090/S0002-9947-1961-0136681-X
- Gilles Godefroy, Some remarks on Suslin sections, Studia Math. 84 (1986), no. 2, 159–167. MR 871854, DOI 10.4064/sm-84-2-159-167
- Leo Harrington, David Marker, and Saharon Shelah, Borel orderings, Trans. Amer. Math. Soc. 310 (1988), no. 1, 293–302. MR 965754, DOI 10.1090/S0002-9947-1988-0965754-3 K. Kada, A Borel version of Dilworth’s theorem (to appear).
- Yitzhak Katznelson and Benjamin Weiss, The construction of quasi-invariant measures, Israel J. Math. 12 (1972), 1–4. MR 316679, DOI 10.1007/BF02764806
- Alexander S. Kechris, Amenable equivalence relations and Turing degrees, J. Symbolic Logic 56 (1991), no. 1, 182–194. MR 1131739, DOI 10.2307/2274913
- Wolfgang Krieger, On quasi-invariant measures in uniquely ergodic systems, Invent. Math. 14 (1971), 184–196. MR 293060, DOI 10.1007/BF01418888
- Wolfgang Krieger, On Borel automorphisms and their quasi-invariant measures, Math. Z. 151 (1976), no. 1, 19–24. MR 417389, DOI 10.1007/BF01174720
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- Alain Louveau, Two results on Borel orders, J. Symbolic Logic 54 (1989), no. 3, 865–874. MR 1011175, DOI 10.2307/2274748
- Alain Louveau and Jean Saint-Raymond, On the quasi-ordering of Borel linear orders under embeddability, J. Symbolic Logic 55 (1990), no. 2, 537–560. MR 1056369, DOI 10.2307/2274645
- Donald A. Martin, Infinite games, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) Acad. Sci. Fennica, Helsinki, 1980, pp. 269–273. MR 562614
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
- Saharon Shelah and Benjamin Weiss, Measurable recurrence and quasi-invariant measures, Israel J. Math. 43 (1982), no. 2, 154–160. MR 689974, DOI 10.1007/BF02761726
- Jack H. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic 18 (1980), no. 1, 1–28. MR 568914, DOI 10.1016/0003-4843(80)90002-9 C. Uzcategui, Ph.D. Thesis, California Institute of Technology, 1990.
- Benjamin Weiss, Measurable dynamics, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 395–421. MR 737417, DOI 10.1090/conm/026/737417
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: J. Amer. Math. Soc. 3 (1990), 903-928
- MSC: Primary 28E15; Secondary 03E15, 22D40
- DOI: https://doi.org/10.1090/S0894-0347-1990-1057041-5
- MathSciNet review: 1057041