Lattices of minimal covolume in $\textrm {SL}_ 2$: a non-Archimedean analogue of Siegel’s theorem $\mu \geq \pi /21$
Author:
Alexander Lubotzky
Journal:
J. Amer. Math. Soc. 3 (1990), 961-975
MSC:
Primary 22E40; Secondary 20G25, 22E20
DOI:
https://doi.org/10.1090/S0894-0347-1990-1070003-7
MathSciNet review:
1070003
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Hyman Bass, Covering theory for graphs of groups, J. Pure Appl. Algebra 89 (1993), no. 1-2, 3–47. MR 1239551, DOI https://doi.org/10.1016/0022-4049%2893%2990085-8
- Hyman Bass and Ravi Kulkarni, Uniform tree lattices, J. Amer. Math. Soc. 3 (1990), no. 4, 843–902. MR 1065928, DOI https://doi.org/10.1090/S0894-0347-1990-1065928-2
- A. Borel, Commensurability classes and volumes of hyperbolic $3$-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 1, 1–33. MR 616899
- Armand Borel and Gopal Prasad, Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 119–171. MR 1019963 J. Elstrodt, F. Grunewald, and J. Mennicke, Discrete groups on hyperbolic $3$-space and their automorphic functions (to appear).
- Walter Feit, On finite linear groups, J. Algebra 5 (1967), 378–400. MR 207818, DOI https://doi.org/10.1016/0021-8693%2867%2990049-X ---, Exceptional subgroups of $G{L_2}$, an appendix to [La].
- Walter Feit, Characters of finite groups, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0219636 I. M. Gelfand, M. I. Graev, and I. I. Piateski-Shapiro, Representation theory and automorphic forms, W. B. Saunders, Philadelphia, PA, 1969.
- Lothar Gerritzen and Marius van der Put, Schottky groups and Mumford curves, Lecture Notes in Mathematics, vol. 817, Springer, Berlin, 1980. MR 590243
- L. Greenberg, Finiteness theorems for Fuchsian and Kleinian groups, Discrete groups and automorphic functions (Proc. Conf., Cambridge, 1975), Academic Press, London, 1977, pp. 199–257. MR 0585138
- Serge Lang, Introduction to modular forms, Springer-Verlag, Berlin-New York, 1976. Grundlehren der mathematischen Wissenschaften, No. 222. MR 0429740
- Alexander Lubotzky, Trees and discrete subgroups of Lie groups over local fields, Bull. Amer. Math. Soc. (N.S.) 20 (1989), no. 1, 27–30. MR 945301, DOI https://doi.org/10.1090/S0273-0979-1989-15686-3
- Robert Meyerhoff, The cusped hyperbolic $3$-orbifold of minimum volume, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 2, 154–156. MR 799800, DOI https://doi.org/10.1090/S0273-0979-1985-15401-1
- G. A. Margulis and J. Rohlfs, On the proportionality of covolumes of discrete subgroups, Math. Ann. 275 (1986), no. 2, 197–205. MR 854006, DOI https://doi.org/10.1007/BF01458457
- Gopal Prasad, Volumes of $S$-arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 91–117. With an appendix by Moshe Jarden and the author. MR 1019962
- M. S. Raghunathan, Discrete subgroups of algebraic groups over local fields of positive characteristics, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), no. 2, 127–146. MR 1013536, DOI https://doi.org/10.1007/BF02837800
- Jean-Pierre Serre, Lie algebras and Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1965. Lectures given at Harvard University, 1964. MR 0218496
- Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR 607504
- Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. MR 0450380 ---, Propiétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. (1972), 259-331.
- Carl Ludwig Siegel, Some remarks on discontinuous groups, Ann. of Math. (2) 46 (1945), 708–718. MR 14088, DOI https://doi.org/10.2307/1969206
- Michio Suzuki, Gun ron. Vol. 1, Gendai Sūgaku [Modern Mathematics], vol. 18, Iwanami Shoten, Tokyo, 1977 (Japanese). MR 514842 W. Thurston, The geometry and topology of $3$-manifolds, notes, Princeton University, 1978.
- André Weil, On the analogue of the modular group in characteristic $p$, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968) Springer, New York, 1970, pp. 211–223. MR 0271030
Retrieve articles in Journal of the American Mathematical Society with MSC: 22E40, 20G25, 22E20
Retrieve articles in all journals with MSC: 22E40, 20G25, 22E20
Additional Information
Article copyright:
© Copyright 1990
American Mathematical Society