Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Embeddability for three-dimensional CR-manifolds
HTML articles powered by AMS MathViewer

by Daniel M. Burns and Charles L. Epstein
J. Amer. Math. Soc. 3 (1990), 809-841
  • Richard Beals and Peter Greiner, Calculus on Heisenberg manifolds, Annals of Mathematics Studies, vol. 119, Princeton University Press, Princeton, NJ, 1988. MR 953082, DOI 10.1515/9781400882397
  • L. Boutet de Monvel, Intégration des équations de Cauchy-Riemann induites formelles, Séminaire Goulaouic-Lions-Schwartz 1974–1975: Équations aux dérivées partielles linéaires et non linéaires, École Polytech., Centre de Math., Paris, 1975, pp. Exp. No. 9, 14 (French). MR 0409893
  • Jih Hsin Chêng and John M. Lee, The Burns-Epstein invariant and deformation of CR structures, Duke Math. J. 60 (1990), no. 1, 221–254. MR 1047122, DOI 10.1215/S0012-7094-90-06008-9
  • Y. Eliashberg, Classification of overtwisted contact structures on $3$-manifolds, Invent. Math. 98 (1989), no. 3, 623–637. MR 1022310, DOI 10.1007/BF01393840
  • Robert E. Greene and Steven G. Krantz, Stability of the Carathéodory and Kobayashi metrics and applications to biholomorphic mappings, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 77–93. MR 740874, DOI 10.1090/pspum/041/740874
  • Tosio Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin, Heidelberg, and New York, 1980.
  • J. J. Kohn, The range of the tangential Cauchy-Riemann operator, Duke Math. J. 53 (1986), no. 2, 525–545. MR 850548, DOI 10.1215/S0012-7094-86-05330-5
  • John M. Lee, private communication, January 1990.
  • Richard B. Melrose, The wave equation for a hypoelliptic operator with symplectic characteristics of codimension two, J. Analyse Math. 44 (1984/85), 134–182. MR 801291, DOI 10.1007/BF02790194
  • L. Nirenberg, A certain problem of Hans Lewy, Uspehi Mat. Nauk 29 (1974), no. 2(176), 241–251 (Russian). Translated from the English by Ju. V. Egorov; Collection of articles dedicated to the memory of Ivan Georgievič Petrovskiĭ (1901–1973), I. MR 0492752
  • Jean-Pierre Rosay, Sur une caractérisation de la boule parmi les domaines de $\textbf {C}^{n}$ par son groupe d’automorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, ix, 91–97 (French, with English summary). MR 558590
  • H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconcave boundary, Proc. Conf. Complex Analysis (Minneapolis, 1964) Springer, Berlin, 1965, pp. 242–256. MR 0176106
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC: 32F40, 32C16
  • Retrieve articles in all journals with MSC: 32F40, 32C16
Bibliographic Information
  • © Copyright 1990 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 3 (1990), 809-841
  • MSC: Primary 32F40; Secondary 32C16
  • DOI:
  • MathSciNet review: 1071115