Oscillation theorems for primes in arithmetic progressions and for sifting functions
HTML articles powered by AMS MathViewer
- by John Friedlander, Andrew Granville, Adolf Hildebrand and Helmut Maier
- J. Amer. Math. Soc. 4 (1991), 25-86
- DOI: https://doi.org/10.1090/S0894-0347-1991-1080647-5
- PDF | Request permission
References
- E. Bombieri, J. B. Friedlander, and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), no. 3-4, 203–251. MR 834613, DOI 10.1007/BF02399204
- A. A. Buhštab, On an asymptotic estimate of the number of numbers of an arithmetic progression which are not divisible by “relatively” small prime numbers, Mat. Sbornik N.S. 28(70) (1951), 165–184 (Russian). MR 0045756
- A. Y. Cheer and D. A. Goldston, A differential delay equation arising from the sieve of Eratosthenes, Math. Comp. 55 (1990), no. 191, 129–141. MR 1023043, DOI 10.1090/S0025-5718-1990-1023043-8
- Harold Davenport, Multiplicative number theory, 2nd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York-Berlin, 1980. Revised by Hugh L. Montgomery. MR 606931
- P. D. T. A. Elliott, Some applications of a theorem of Raikov to number theory, J. Number Theory 2 (1970), 22–55. MR 258776, DOI 10.1016/0022-314X(70)90004-1 —, Probabilistic number theory, Vol. I, Springer-Verlag, New York, 1979.
- P. D. T. A. Elliott and H. Halberstam, A conjecture in prime number theory, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69) Academic Press, London, 1970, pp. 59–72. MR 0276195
- John Friedlander and Andrew Granville, Limitations to the equi-distribution of primes. I, Ann. of Math. (2) 129 (1989), no. 2, 363–382. MR 986796, DOI 10.2307/1971450
- Étienne Fouvry, Sur le problème des diviseurs de Titchmarsh, J. Reine Angew. Math. 357 (1985), 51–76 (French). MR 783533, DOI 10.1515/crll.1985.357.51
- P. X. Gallagher, A large sieve density estimate near $\sigma =1$, Invent. Math. 11 (1970), 329–339. MR 279049, DOI 10.1007/BF01403187
- Richard R. Hall and Gérald Tenenbaum, Divisors, Cambridge Tracts in Mathematics, vol. 90, Cambridge University Press, Cambridge, 1988. MR 964687, DOI 10.1017/CBO9780511566004
- Adolf Hildebrand and Helmut Maier, Irregularities in the distribution of primes in short intervals, J. Reine Angew. Math. 397 (1989), 162–193. MR 993220
- Adolf Hildebrand and Gérald Tenenbaum, On integers free of large prime factors, Trans. Amer. Math. Soc. 296 (1986), no. 1, 265–290. MR 837811, DOI 10.1090/S0002-9947-1986-0837811-1
- M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 164–170. MR 292774, DOI 10.1007/BF01418933
- Aleksandar Ivić, The Riemann zeta-function, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985. The theory of the Riemann zeta-function with applications. MR 792089
- H. Iwaniec, Rosser’s sieve—bilinear forms of the remainder terms—some applications, Recent progress in analytic number theory, Vol. 1 (Durham, 1979) Academic Press, London-New York, 1981, pp. 203–230. MR 637348
- Helmut Maier, Primes in short intervals, Michigan Math. J. 32 (1985), no. 2, 221–225. MR 783576, DOI 10.1307/mmj/1029003189
- Hugh L. Montgomery, Problems concerning prime numbers, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974) Proc. Sympos. Pure Math., Vol. XXVIII, Amer. Math. Soc., Providence, R.I., 1976, pp. 307–310. MR 0427249
- Jean-Louis Nicolas, Répartitions des nombres largement composés, Séminaire Delange-Pisot-Poitou, 19e année: 1977/78, Théorie des nombres, Fasc. 2, Secrétariat Math., Paris, 1978, pp. Exp. No. 41, 10 (French, with English summary). MR 520330
- Atle Selberg, On the normal density of primes in small intervals, and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), no. 6, 87–105. MR 12624
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: J. Amer. Math. Soc. 4 (1991), 25-86
- MSC: Primary 11N13; Secondary 11N25
- DOI: https://doi.org/10.1090/S0894-0347-1991-1080647-5
- MathSciNet review: 1080647