Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence
HTML articles powered by AMS MathViewer
- by Xianzhe Dai
- J. Amer. Math. Soc. 4 (1991), 265-321
- DOI: https://doi.org/10.1090/S0894-0347-1991-1088332-0
- PDF | Request permission
Abstract:
We first prove an adiabatic limit formula for the $\eta$-invariant of a Dirac operator, generalizing the recent work of J.-M. Bismut and J. Cheeger. An essential part of the proof is the study of the spectrum of the Dirac operator in the adiabatic limit. A new contribution arises in the adiabatic limit formula, in the form of a global term coming from the (asymptotically) very small eigenvalues. We then proceed to show that, for the signature operator, these very small eigenvalues have a purely topological significance. In fact, we show that the Leray spectral sequence can be recast in terms of these very small eigenvalues. This leads to a refined adiabatic limit formula for the signature operator where the global term is identified with a topological invariant, the signature of a certain bilinear form arising from the Leray spectral sequence. As an interesting application, we give intrinsic characterization of the non-multiplicativity of signature.References
- M. F. Atiyah, The signature of fibre-bundles, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 73–84. MR 0254864
- M. F. Atiyah, H. Donnelly, and I. M. Singer, Eta invariants, signature defects of cusps, and values of $L$-functions, Ann. of Math. (2) 118 (1983), no. 1, 131–177. MR 707164, DOI 10.2307/2006957
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. MR 397797, DOI 10.1017/S0305004100049410
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. I, Ann. of Math. (2) 87 (1968), 484–530. MR 236950, DOI 10.2307/1970715
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546–604. MR 236952, DOI 10.2307/1970717
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. V, Ann. of Math. (2) 93 (1971), 139–149. MR 279834, DOI 10.2307/1970757 N. Berline, E. Getzler, and M. Vergne, Heat kernels and Dirac operators, manuscript.
- Jean-Michel Bismut, The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math. 83 (1986), no. 1, 91–151. MR 813584, DOI 10.1007/BF01388755
- Jean-Michel Bismut and Jeff Cheeger, Invariants êta et indice des familles pour des variétés à bord, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 4, 127–130 (French, with English summary). MR 901625
- Jean-Michel Bismut and Jeff Cheeger, $\eta$-invariants and their adiabatic limits, J. Amer. Math. Soc. 2 (1989), no. 1, 33–70. MR 966608, DOI 10.1090/S0894-0347-1989-0966608-3
- Jean-Michel Bismut and Jeff Cheeger, Families index for manifolds with boundary, superconnections, and cones. I. Families of manifolds with boundary and Dirac operators, J. Funct. Anal. 89 (1990), no. 2, 313–363. MR 1042214, DOI 10.1016/0022-1236(90)90098-6
- Jean-Michel Bismut and Jeff Cheeger, Families index for manifolds with boundary, superconnections and cones. II. The Chern character, J. Funct. Anal. 90 (1990), no. 2, 306–354. MR 1052337, DOI 10.1016/0022-1236(90)90086-Z —, Remarks on the index theorem for families of Dirac operators on manifolds with boundary (to appear). —, in preparation.
- Jean-Michel Bismut and Daniel S. Freed, The analysis of elliptic families. I. Metrics and connections on determinant bundles, Comm. Math. Phys. 106 (1986), no. 1, 159–176. MR 853982
- Jean-Michel Bismut and Daniel S. Freed, The analysis of elliptic families. I. Metrics and connections on determinant bundles, Comm. Math. Phys. 106 (1986), no. 1, 159–176. MR 853982
- Jeff Cheeger, Spectral geometry of singular Riemannian spaces, J. Differential Geom. 18 (1983), no. 4, 575–657 (1984). MR 730920
- Jeff Cheeger, $\eta$-invariants, the adiabatic approximation and conical singularities. I. The adiabatic approximation, J. Differential Geom. 26 (1987), no. 1, 175–221. MR 892036 J. Cheeger and X. Dai, The ${L^2}$-cohomology and signature of a bundle of cones, in preparation.
- Jeff Cheeger, Mikhail Gromov, and Michael Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geometry 17 (1982), no. 1, 15–53. MR 658471
- S. S. Chern, F. Hirzebruch, and J.-P. Serre, On the index of a fibered manifold, Proc. Amer. Math. Soc. 8 (1957), 587–596. MR 87943, DOI 10.1090/S0002-9939-1957-0087943-0 X. Dai and R. Melrose, Adiabatic limit and analytic torsion, in preparation.
- Harold Donnelly, Local index theorem for families, Michigan Math. J. 35 (1988), no. 1, 11–20. MR 931936, DOI 10.1307/mmj/1029003678
- Daniel S. Freed, Determinants, torsion, and strings, Comm. Math. Phys. 107 (1986), no. 3, 483–513. MR 866202
- Ezra Getzler, A short proof of the local Atiyah-Singer index theorem, Topology 25 (1986), no. 1, 111–117. MR 836727, DOI 10.1016/0040-9383(86)90008-X
- Peter B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Mathematics Lecture Series, vol. 11, Publish or Perish, Inc., Wilmington, DE, 1984. MR 783634 L. Hörmander, The analysis of linear partial differential operators. Vol. III, Grundlehren Math. Wiss, Band 274, Springer, Berlin, Heidelberg, and New York, 1985. T. Kato, Perturbation theory for linear operators. Springer-Verlag, 1980.
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
- Gheorghe Lusztig, Novikov’s higher signature and families of elliptic operators, J. Differential Geometry 7 (1972), 229–256. MR 322889
- Rafe R. Mazzeo and Richard B. Melrose, The adiabatic limit, Hodge cohomology and Leray’s spectral sequence for a fibration, J. Differential Geom. 31 (1990), no. 1, 185–213. MR 1030670 R. Melrose, Pseudodifferential operators on manifolds with corners, preprint. —, Analysis on manifolds with corners, M.I.T. Notes, 1988.
- Richard B. Melrose, Transformation of boundary problems, Acta Math. 147 (1981), no. 3-4, 149–236. MR 639039, DOI 10.1007/BF02392873
- Werner Müller, Signature defects of cusps of Hilbert modular varieties and values of $L$-series at $s=1$, J. Differential Geom. 20 (1984), no. 1, 55–119. MR 772126
- Werner Müller, Manifolds with cusps of rank one, Lecture Notes in Mathematics, vol. 1244, Springer-Verlag, Berlin, 1987. Spectral theory and $L^2$-index theorem. MR 891654, DOI 10.1007/BFb0077660
- Daniel Quillen, Superconnections and the Chern character, Topology 24 (1985), no. 1, 89–95. MR 790678, DOI 10.1016/0040-9383(85)90047-3
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
- Barry Simon, Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions, Ann. Inst. H. Poincaré Sect. A (N.S.) 38 (1983), no. 3, 295–308 (English, with French summary). MR 708966
- I. M. Singer, The $\eta$-invariant and the index, Mathematical aspects of string theory (San Diego, Calif., 1986) Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, Singapore, 1987, pp. 239–258. MR 915824
- Mark Stern, $L^2$-index theorems on locally symmetric spaces, Invent. Math. 96 (1989), no. 2, 231–282. MR 989698, DOI 10.1007/BF01393964
- Edward Witten, Global gravitational anomalies, Comm. Math. Phys. 100 (1985), no. 2, 197–229. MR 804460
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: J. Amer. Math. Soc. 4 (1991), 265-321
- MSC: Primary 58G10; Secondary 55T10, 58G25
- DOI: https://doi.org/10.1090/S0894-0347-1991-1088332-0
- MathSciNet review: 1088332