Quivers, perverse sheaves, and quantized enveloping algebras
HTML articles powered by AMS MathViewer
- by G. Lusztig
- J. Amer. Math. Soc. 4 (1991), 365-421
- DOI: https://doi.org/10.1090/S0894-0347-1991-1088333-2
- PDF | Request permission
References
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520
- Vlastimil Dlab and Claus Michael Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 6 (1976), no. 173, v+57. MR 447344, DOI 10.1090/memo/0173
- Victor G. Kac, Infinite-dimensional Lie algebras, Progress in Mathematics, vol. 44, Birkhäuser Boston, Inc., Boston, MA, 1983. An introduction. MR 739850, DOI 10.1007/978-1-4757-1382-4
- Masaki Kashiwara and Pierre Schapira, Microlocal study of sheaves, Astérisque 128 (1985), 235 (English, with French summary). Corrections to this article can be found in Astérisque No. 130, p. 209. MR 794557
- P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), no. 3, 665–683. MR 992334
- George Lusztig, Character sheaves. I, Adv. in Math. 56 (1985), no. 3, 193–237. MR 792706, DOI 10.1016/0001-8708(85)90034-9
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, DOI 10.1090/S0894-0347-1990-1035415-6 —, Canonical bases arising from quantized enveloping algebras, II, Progr. Theor. Phys. 102 (1990).
- R. D. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423–432. MR 361141, DOI 10.2307/1971080
- Claus Michael Ringel, Hall algebras and quantum groups, Invent. Math. 101 (1990), no. 3, 583–591. MR 1062796, DOI 10.1007/BF01231516 A. Schofield, Notes on constructing Lie algebras from finite-dimensional algebras, preprint.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: J. Amer. Math. Soc. 4 (1991), 365-421
- MSC: Primary 17B37; Secondary 17B67, 20G05
- DOI: https://doi.org/10.1090/S0894-0347-1991-1088333-2
- MathSciNet review: 1088333