Vanishing theorems, a theorem of Severi, and the equations defining projective varieties
HTML articles powered by AMS MathViewer
- by Aaron Bertram, Lawrence Ein and Robert Lazarsfeld
- J. Amer. Math. Soc. 4 (1991), 587-602
- DOI: https://doi.org/10.1090/S0894-0347-1991-1092845-5
- PDF | Request permission
References
- M. Andreatta, E. L. Ballico, and A. Sommese, On the projective normality of the adjunction bundles. II, preprint.
- Marco Andreatta and Andrew J. Sommese, On the projective normality of the adjunction bundles, Comment. Math. Helv. 66 (1991), no. 3, 362–367. MR 1120652, DOI 10.1007/BF02566655
- Wolf Barth, Submanifolds of low codimension in projective space, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 409–413. MR 0422294 D. Bayer and D. Mumford (to appear).
- David Bayer and Michael Stillman, On the complexity of computing syzygies, J. Symbolic Comput. 6 (1988), no. 2-3, 135–147. Computational aspects of commutative algebra. MR 988409, DOI 10.1016/S0747-7171(88)80039-7
- David Bayer and Michael Stillman, A criterion for detecting $m$-regularity, Invent. Math. 87 (1987), no. 1, 1–11. MR 862710, DOI 10.1007/BF01389151
- Aaron Bertram, Lawrence Ein, and Robert Lazarsfeld, Surjectivity of Gaussian maps for line bundles of large degree on curves, Algebraic geometry (Chicago, IL, 1989) Lecture Notes in Math., vol. 1479, Springer, Berlin, 1991, pp. 15–25. MR 1181203, DOI 10.1007/BFb0086260 D. Butler, Normal generation of vector bundles on curves (to appear). P. Deligne and A. Dimca, Filtrations de Hodge et par l’ordre du pôle pour les hypersurfaces singulaires, preprint. L. Ein and R. Lazarsfeld, A theorem on the syzygies of smooth projective varieties of arbitrary dimension (to appear). E. Esnault, Hodge type of subvarieties of ${\mathbb {P}^N}$ of small degrees, preprint.
- Hélène Esnault and Eckart Viehweg, Sur une minoration du degré d’hypersurfaces s’annulant en certains points, Math. Ann. 263 (1983), no. 1, 75–86 (French). MR 697332, DOI 10.1007/BF01457085
- Hélène Esnault and Eckart Viehweg, Dyson’s lemma for polynomials in several variables (and the theorem of Roth), Invent. Math. 78 (1984), no. 3, 445–490. MR 768988, DOI 10.1007/BF01388445
- Gerd Faltings, Ein Kriterium für vollständige Durchschnitte, Invent. Math. 62 (1981), no. 3, 393–401 (German). MR 604835, DOI 10.1007/BF01394251
- Hubert Flenner, Babylonian tower theorems on the punctured spectrum, Math. Ann. 271 (1985), no. 1, 153–160. MR 779613, DOI 10.1007/BF01455804 —, Babylonian tower theorems for coverings (to appear).
- Mark L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), no. 1, 125–171. MR 739785
- Phillip A. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 185–251. MR 0258070
- L. Gruson, R. Lazarsfeld, and C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983), no. 3, 491–506. MR 704401, DOI 10.1007/BF01398398
- Robin Hartshorne, Varieties of small codimension in projective space, Bull. Amer. Math. Soc. 80 (1974), 1017–1032. MR 384816, DOI 10.1090/S0002-9904-1974-13612-8
- Audun Holme and Michael Schneider, A computer aided approach to codimension $2$ subvarieties of $\textbf {P}_n,\;n \geqq 6$, J. Reine Angew. Math. 357 (1985), 205–220. MR 783542, DOI 10.1515/crll.1985.357.205
- Yujiro Kawamata, A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann. 261 (1982), no. 1, 43–46. MR 675204, DOI 10.1007/BF01456407
- George R. Kempf, Projective coordinate rings of abelian varieties, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 225–235. MR 1463704
- Robert Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces, Duke Math. J. 55 (1987), no. 2, 423–429. MR 894589, DOI 10.1215/S0012-7094-87-05523-2
- Robert Lazarsfeld, A sampling of vector bundle techniques in the study of linear series, Lectures on Riemann surfaces (Trieste, 1987) World Sci. Publ., Teaneck, NJ, 1989, pp. 500–559. MR 1082360
- Shigefumi Mori, Classification of higher-dimensional varieties, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 269–331. MR 927961, DOI 10.1090/pspum/046.1/927961
- David Mumford, Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) Edizioni Cremonese, Rome, 1970, pp. 29–100. MR 0282975
- N. Yu. Netsvetaev, Projective varieties defined by small number of equations are complete intersections, Topology and geometry—Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin, 1988, pp. 433–453. MR 970088, DOI 10.1007/BFb0082787
- Henry C. Pinkham, A Castelnuovo bound for smooth surfaces, Invent. Math. 83 (1986), no. 2, 321–332. MR 818356, DOI 10.1007/BF01388966
- Z. Ran, On projective varieties of codimension $2$, Invent. Math. 73 (1983), no. 2, 333–336. MR 714095, DOI 10.1007/BF01394029
- Ziv Ran, Local differential geometry and generic projections of threefolds, J. Differential Geom. 32 (1990), no. 1, 131–137. MR 1064868 E. Sato, Babylonian tower theorem on varieties, preprint.
- J. G. Semple and L. Roth, Introduction to Algebraic Geometry, Oxford, at the Clarendon Press, 1949. MR 0034048 F. Severi, Si alcune questioni di postualzione, Rend. Circ. Mat. Palermo 17 (1903), 73-103.
- Eckart Viehweg, Vanishing theorems, J. Reine Angew. Math. 335 (1982), 1–8. MR 667459, DOI 10.1515/crll.1982.335.1
- Jonathan M. Wahl, The Jacobian algebra of a graded Gorenstein singularity, Duke Math. J. 55 (1987), no. 4, 843–871. MR 916123, DOI 10.1215/S0012-7094-87-05540-2
- Jonathan Wahl, Gaussian maps on algebraic curves, J. Differential Geom. 32 (1990), no. 1, 77–98. MR 1064866 —, Gaussian maps and tensor products of irreducible representations (to appear).
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: J. Amer. Math. Soc. 4 (1991), 587-602
- MSC: Primary 14F17; Secondary 14J99, 14N05
- DOI: https://doi.org/10.1090/S0894-0347-1991-1092845-5
- MathSciNet review: 1092845