Vanishing theorems, a theorem of Severi, and the equations defining projective varieties
Authors:
Aaron Bertram, Lawrence Ein and Robert Lazarsfeld
Journal:
J. Amer. Math. Soc. 4 (1991), 587-602
MSC:
Primary 14F17; Secondary 14J99, 14N05
DOI:
https://doi.org/10.1090/S0894-0347-1991-1092845-5
MathSciNet review:
1092845
Full-text PDF Free Access
References | Similar Articles | Additional Information
-
M. Andreatta, E. L. Ballico, and A. Sommese, On the projective normality of the adjunction bundles. II, preprint.
- Marco Andreatta and Andrew J. Sommese, On the projective normality of the adjunction bundles, Comment. Math. Helv. 66 (1991), no. 3, 362–367. MR 1120652, DOI https://doi.org/10.1007/BF02566655
- Wolf Barth, Submanifolds of low codimension in projective space, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 409–413. MR 0422294 D. Bayer and D. Mumford (to appear).
- David Bayer and Michael Stillman, On the complexity of computing syzygies, J. Symbolic Comput. 6 (1988), no. 2-3, 135–147. Computational aspects of commutative algebra. MR 988409, DOI https://doi.org/10.1016/S0747-7171%2888%2980039-7
- David Bayer and Michael Stillman, A criterion for detecting $m$-regularity, Invent. Math. 87 (1987), no. 1, 1–11. MR 862710, DOI https://doi.org/10.1007/BF01389151
- Aaron Bertram, Lawrence Ein, and Robert Lazarsfeld, Surjectivity of Gaussian maps for line bundles of large degree on curves, Algebraic geometry (Chicago, IL, 1989) Lecture Notes in Math., vol. 1479, Springer, Berlin, 1991, pp. 15–25. MR 1181203, DOI https://doi.org/10.1007/BFb0086260 D. Butler, Normal generation of vector bundles on curves (to appear). P. Deligne and A. Dimca, Filtrations de Hodge et par l’ordre du pôle pour les hypersurfaces singulaires, preprint. L. Ein and R. Lazarsfeld, A theorem on the syzygies of smooth projective varieties of arbitrary dimension (to appear). E. Esnault, Hodge type of subvarieties of ${\mathbb {P}^N}$ of small degrees, preprint.
- Hélène Esnault and Eckart Viehweg, Sur une minoration du degré d’hypersurfaces s’annulant en certains points, Math. Ann. 263 (1983), no. 1, 75–86 (French). MR 697332, DOI https://doi.org/10.1007/BF01457085
- Hélène Esnault and Eckart Viehweg, Dyson’s lemma for polynomials in several variables (and the theorem of Roth), Invent. Math. 78 (1984), no. 3, 445–490. MR 768988, DOI https://doi.org/10.1007/BF01388445
- Gerd Faltings, Ein Kriterium für vollständige Durchschnitte, Invent. Math. 62 (1981), no. 3, 393–401 (German). MR 604835, DOI https://doi.org/10.1007/BF01394251
- Hubert Flenner, Babylonian tower theorems on the punctured spectrum, Math. Ann. 271 (1985), no. 1, 153–160. MR 779613, DOI https://doi.org/10.1007/BF01455804 ---, Babylonian tower theorems for coverings (to appear).
- Mark L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), no. 1, 125–171. MR 739785
- Phillip A. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 185–251. MR 0258070
- L. Gruson, R. Lazarsfeld, and C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983), no. 3, 491–506. MR 704401, DOI https://doi.org/10.1007/BF01398398
- Robin Hartshorne, Varieties of small codimension in projective space, Bull. Amer. Math. Soc. 80 (1974), 1017–1032. MR 384816, DOI https://doi.org/10.1090/S0002-9904-1974-13612-8
- Audun Holme and Michael Schneider, A computer aided approach to codimension $2$ subvarieties of ${\bf P}_n,\;n \geqq 6$, J. Reine Angew. Math. 357 (1985), 205–220. MR 783542, DOI https://doi.org/10.1515/crll.1985.357.205
- Yujiro Kawamata, A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann. 261 (1982), no. 1, 43–46. MR 675204, DOI https://doi.org/10.1007/BF01456407
- George R. Kempf, Projective coordinate rings of abelian varieties, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 225–235. MR 1463704
- Robert Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces, Duke Math. J. 55 (1987), no. 2, 423–429. MR 894589, DOI https://doi.org/10.1215/S0012-7094-87-05523-2
- Robert Lazarsfeld, A sampling of vector bundle techniques in the study of linear series, Lectures on Riemann surfaces (Trieste, 1987) World Sci. Publ., Teaneck, NJ, 1989, pp. 500–559. MR 1082360
- Shigefumi Mori, Classification of higher-dimensional varieties, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 269–331. MR 927961
- David Mumford, Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) Edizioni Cremonese, Rome, 1970, pp. 29–100. MR 0282975
- N. Yu. Netsvetaev, Projective varieties defined by small number of equations are complete intersections, Topology and geometry—Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin, 1988, pp. 433–453. MR 970088, DOI https://doi.org/10.1007/BFb0082787
- Henry C. Pinkham, A Castelnuovo bound for smooth surfaces, Invent. Math. 83 (1986), no. 2, 321–332. MR 818356, DOI https://doi.org/10.1007/BF01388966
- Z. Ran, On projective varieties of codimension $2$, Invent. Math. 73 (1983), no. 2, 333–336. MR 714095, DOI https://doi.org/10.1007/BF01394029
- Ziv Ran, Local differential geometry and generic projections of threefolds, J. Differential Geom. 32 (1990), no. 1, 131–137. MR 1064868 E. Sato, Babylonian tower theorem on varieties, preprint.
- J. G. Semple and L. Roth, Introduction to Algebraic Geometry, Oxford, at the Clarendon Press, 1949. MR 0034048 F. Severi, Si alcune questioni di postualzione, Rend. Circ. Mat. Palermo 17 (1903), 73-103.
- Eckart Viehweg, Vanishing theorems, J. Reine Angew. Math. 335 (1982), 1–8. MR 667459, DOI https://doi.org/10.1515/crll.1982.335.1
- Jonathan M. Wahl, The Jacobian algebra of a graded Gorenstein singularity, Duke Math. J. 55 (1987), no. 4, 843–871. MR 916123, DOI https://doi.org/10.1215/S0012-7094-87-05540-2
- Jonathan Wahl, Gaussian maps on algebraic curves, J. Differential Geom. 32 (1990), no. 1, 77–98. MR 1064866 ---, Gaussian maps and tensor products of irreducible representations (to appear).
Retrieve articles in Journal of the American Mathematical Society with MSC: 14F17, 14J99, 14N05
Retrieve articles in all journals with MSC: 14F17, 14J99, 14N05
Additional Information
Article copyright:
© Copyright 1991
American Mathematical Society