On the envelope of holomorphy of a $2$-sphere in $\textbf {C}^ 2$
HTML articles powered by AMS MathViewer
- by Eric Bedford and Wilhelm Klingenberg
- J. Amer. Math. Soc. 4 (1991), 623-646
- DOI: https://doi.org/10.1090/S0894-0347-1991-1094437-0
- PDF | Request permission
References
- Eric Bedford, Levi flat hypersurfaces in $\textbf {C}^{2}$ with prescribed boundary: stability, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 9 (1982), no. 4, 529–570. MR 693779
- Eric Bedford and Bernard Gaveau, Envelopes of holomorphy of certain $2$-spheres in $\textbf {C}^{2}$, Amer. J. Math. 105 (1983), no. 4, 975–1009. MR 708370, DOI 10.2307/2374301
- Errett Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J. 32 (1965), 1–21. MR 200476
- Errett Bishop, Conditions for the analyticity of certain sets, Michigan Math. J. 11 (1964), 289–304. MR 168801
- Andrew Browder, Cohomology of maximal ideal spaces, Bull. Amer. Math. Soc. 67 (1961), 515–516. MR 130580, DOI 10.1090/S0002-9904-1961-10663-0
- E. M. Chirka, Regularity of the boundaries of analytic sets, Mat. Sb. (N.S.) 117(159) (1982), no. 3, 291–336, 431 (Russian). MR 648411
- Amédée Debiard and Bernard Gaveau, Problème de Dirichlet pour l’équation de Lévi, Bull. Sci. Math. (2) 102 (1978), no. 4, 369–386 (French, with English summary). MR 517769 Y. Eliashberg, Three lectures on symplectic topology in Cala Gonone, preprint. —, Filling by holomorphic discs and its applications, Geometry of Low-Dimensional Manifolds, London Math. Soc. Lecture Notes, vol. 151. Y. Eliashberg and V. Harlamov, On the number of complex points on a real surface inside a complex surface, Proceedings of the International Topology Conference in Leningrad, 1982, 143-148.
- Franc Forstnerič, Analytic disks with boundaries in a maximal real submanifold of $\textbf {C}^2$, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 1, 1–44 (English, with French summary). MR 894560, DOI 10.5802/aif.1076
- Franc Forstnerič, Polynomial hulls of sets fibered over the circle, Indiana Univ. Math. J. 37 (1988), no. 4, 869–889. MR 982834, DOI 10.1512/iumj.1988.37.37042
- Michael Freeman, The polynomial hull of a thin two-manifold, Pacific J. Math. 38 (1971), 377–389. MR 308442, DOI 10.2140/pjm.1971.38.377
- Michael Freeman, The uniform algebra generated by $z$ and a smooth even function, Math. Ann. 196 (1972), 269–274. MR 310642, DOI 10.1007/BF01428216
- M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics, Vol. 14, Springer-Verlag, New York-Heidelberg, 1973. MR 0341518, DOI 10.1007/978-1-4615-7904-5
- Stephen J. Greenfield and Nolan R. Wallach, Extendibility properties of submanifolds of C2, Proc. Carolina Conf. on Holomorphic Mappings and Minimal Surfaces (Chapel Hill, N.C., 1970) University of North Carolina, Department of Mathematics, Chapel Hill, N.C., 1970, pp. 77–85. MR 0287026 M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347.
- Carlos E. Kenig and Sidney M. Webster, The local hull of holomorphy of a surface in the space of two complex variables, Invent. Math. 67 (1982), no. 1, 1–21. MR 664323, DOI 10.1007/BF01393370
- Wilhelm Klingenberg Jr., Asymptotic curves on real analytic surfaces in $\textbf {C}^2$, Math. Ann. 273 (1985), no. 1, 149–162. MR 814201, DOI 10.1007/BF01455920 H. Lewy, The nature of the domain governed by different regimes, Atti del Convegno Internazionale Metodi valutativi nella fisicamatematica, Accad. Naz. Lincei, 1975, 181-188.
- Hon Fei Lai, Real submanifolds of codimension two in complex manifolds, Trans. Amer. Math. Soc. 264 (1981), no. 2, 331–352. MR 603767, DOI 10.1090/S0002-9947-1981-0603767-5
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
- Jürgen Moser, Analytic surfaces in $\textbf {C}^2$ and their local hull of holomorphy, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 397–410. MR 802502, DOI 10.5186/aasfm.1985.1044
- Jürgen K. Moser and Sidney M. Webster, Normal forms for real surfaces in $\textbf {C}^{2}$ near complex tangents and hyperbolic surface transformations, Acta Math. 150 (1983), no. 3-4, 255–296. MR 709143, DOI 10.1007/BF02392973 E. L. Stout, Abstract 826-32-09 7 (1986), 174.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: J. Amer. Math. Soc. 4 (1991), 623-646
- MSC: Primary 32D10; Secondary 32E20
- DOI: https://doi.org/10.1090/S0894-0347-1991-1094437-0
- MathSciNet review: 1094437