Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

New invariants of open symplectic and contact manifolds
HTML articles powered by AMS MathViewer

by Yakov Eliashberg
J. Amer. Math. Soc. 4 (1991), 513-520
DOI: https://doi.org/10.1090/S0894-0347-1991-1102580-2
References
  • V. I. Arnol′d, Matematicheskie metody klassicheskoĭ mekhaniki, Izdat. “Nauka”, Moscow, 1974 (Russian). MR 0474390
  • V. Benci, Talk at the Conference in Symplectic Geometry, MSRI, Berkeley, 1988.
  • Daniel Bennequin, Entrelacements et équations de Pfaff, Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982) Astérisque, vol. 107, Soc. Math. France, Paris, 1983, pp. 87–161 (French). MR 753131
  • —, private communication, 1989.
  • I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z. 200 (1989), no. 3, 355–378. MR 978597, DOI 10.1007/BF01215653
  • Y. Eliashberg, Classification of overtwisted contact structures on $3$-manifolds, Invent. Math. 98 (1989), no. 3, 623–637. MR 1022310, DOI 10.1007/BF01393840
  • —, Three lectures on symplectic topology, Cala Gonone, 1988. A. Floer and H. Hofer, in preparation. M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 460-472.
  • H. Hofer and E. Zehnder, A new capacity for symplectic manifolds, Analysis, et cetera, Academic Press, Boston, MA, 1990, pp. 405–427. MR 1039354
  • F. Lalonde and J.-C. Sikorav, Sous-variétés exactes des fibrés cotangent, preprint, 1990.
  • Jean-Claude Sikorav, Rigidité symplectique dans le cotangent de $T^n$, Duke Math. J. 59 (1989), no. 3, 759–763 (French). MR 1046748, DOI 10.1215/S0012-7094-89-05935-8
  • —, Quelques propriétés des plongement Lagrangiens, preprint, 1990.
Similar Articles
Bibliographic Information
  • © Copyright 1991 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 4 (1991), 513-520
  • MSC: Primary 58F05; Secondary 53C15, 57N10, 57R15
  • DOI: https://doi.org/10.1090/S0894-0347-1991-1102580-2
  • MathSciNet review: 1102580