Lower bounds of rates of decay for solutions to the Navier-Stokes equations
HTML articles powered by AMS MathViewer
- by Maria E. Schonbek
- J. Amer. Math. Soc. 4 (1991), 423-449
- DOI: https://doi.org/10.1090/S0894-0347-1991-1103459-2
- PDF | Request permission
References
- L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), no. 6, 771–831. MR 673830, DOI 10.1002/cpa.3160350604
- Ryuji Kajikiya and Tetsuro Miyakawa, On $L^2$ decay of weak solutions of the Navier-Stokes equations in $\textbf {R}^n$, Math. Z. 192 (1986), no. 1, 135–148. MR 835398, DOI 10.1007/BF01162027
- O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Mathematics and its Applications, Vol. 2, Gordon and Breach Science Publishers, New York-London-Paris, 1969. Second English edition, revised and enlarged; Translated from the Russian by Richard A. Silverman and John Chu. MR 0254401
- Maria Elena Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 88 (1985), no. 3, 209–222. MR 775190, DOI 10.1007/BF00752111 —, Large time behavior of solutions to the Navier-Stokes equations, Comm. Partial Differential Equations 11 (1986), 753-763.
- Michael Wiegner, Decay results for weak solutions of the Navier-Stokes equations on $\textbf {R}^n$, J. London Math. Soc. (2) 35 (1987), no. 2, 303–313. MR 881519, DOI 10.1112/jlms/s2-35.2.303
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: J. Amer. Math. Soc. 4 (1991), 423-449
- MSC: Primary 35Q30; Secondary 35B40, 76D05
- DOI: https://doi.org/10.1090/S0894-0347-1991-1103459-2
- MathSciNet review: 1103459